CS 2750 Machine Learning Lecture 19

Ensamble methods: Boosting

Milos Hauskrecht milos@cs.pitt.edu 5329 Sennott Square

CS 2750 Machine Learning

Schedule

Term projects & project presentations:

- April 25: 1:00-4:00pm?
- April 25 & April 27: 1:00 2:30pm

Ensemble methods

Mixture of experts

 Multiple 'base' models (classifiers, regressors), each covers a different part (region) of the input space

Committee machines:

- Multiple 'base' models (classifiers, regressors), each covers the complete input space
- Each base model is trained on a slightly different train set
- Combine predictions of all models to produce the output
 - Goal: Improve the accuracy of the 'base' model

– Methods:

- Bagging
- Boosting
- Stacking (not covered)

CS 2750 Machine Learning

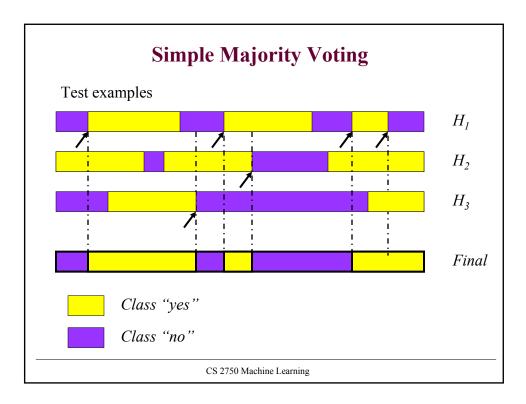
Bagging algorithm

Training

- In each iteration t, t=1,...T
 - Randomly sample with replacement *N* samples from the training set
 - Train a chosen "base model" (e.g. neural network, decision tree) on the samples

Test

- For each test example
 - Start all trained base models
 - Predict by combining results of all T trained models:
 - **Regression:** averaging
 - Classification: a majority vote



Analysis of Bagging

- Expected error= Bias+Variance
 - Expected error is the expected discrepancy between the estimated and true function

$$E\left[\left(\hat{f}(X) - E\left[f(X)\right]\right)^{2}\right]$$

Bias is squared discrepancy between averaged estimated and true function

$$(E[\hat{f}(X)] - E[f(X)])^2$$

 Variance is expected divergence of the estimated function vs. its average value

$$E[\hat{f}(X)-E[\hat{f}(X)]]^2$$

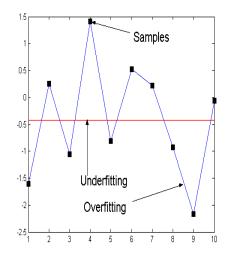
When Bagging works? Under-fitting and over-fitting

• Under-fitting:

- High bias (models are not accurate)
- Small variance (smaller influence of examples in the training set)

Over-fitting:

- Small bias (models flexible enough to fit well to training data)
- Large variance (models depend very much on the training set)



CS 2750 Machine Learning

When Bagging works

- Main property of Bagging (proof omitted)
 - Bagging decreases variance of the base model without changing the bias!!!
 - Why? averaging!
- Bagging typically helps
 - When applied with an over-fitted base model
 - High dependency on actual training data
- It does not help much
 - High bias. When the base model is robust to the changes in the training data (due to sampling)

Boosting

- Mixture of experts
 - One expert per region
 - Expert switching
- Bagging
 - Multiple models on the complete space, a learner is not biased to any region
 - Learners are learned independently
- Boosting
 - Every learner covers the complete space
 - Learners are biased to regions not predicted well by other learners
 - Learners are dependent

CS 2750 Machine Learning

Boosting. Theoretical foundations.

- PAC: Probably Approximately Correct framework
 - (ε - δ) solution
- PAC learning:
 - Learning with the pre-specified error $\, \epsilon \,$ and confidence $\, \delta \,$ parameters
 - the probability that the misclassification error is larger than ϵ is smaller than δ

$$P(ME\ (c)>\varepsilon)\leq\delta$$

- Accuracy (1-\varepsilon): Percent of correctly classified samples in test
- Confidence (1- δ): The probability that in one experiment some accuracy will be achieved

$$P(Acc(c) > 1 - \varepsilon) > (1 - \delta)$$

PAC Learnability

Strong (PAC) learnability:

• There exists a learning algorithm that **efficiently** learns the classification with a pre-specified **accuracy and confidence**

Strong (PAC) learner:

- A learning algorithm P that given an arbitrary
 - classification error ε (< 1/2), and
 - confidence δ (<1/2)
- Outputs a classifier that satisfies this parameters
 - In other words gives:
 - classification accuracy $> (1-\varepsilon)$
 - confidence probability $> (1 \delta)$
 - And runs in time polynomial in $1/\delta$, $1/\epsilon$
 - Implies: number of samples N is polynomial in $1/\delta$, $1/\epsilon$

CS 2750 Machine Learning

Weak Learner

Weak learner:

- A learning algorithm (learner) W
 - Providing a classification accuracy $> 1-\epsilon_o$
 - and probability >1- δ_{o}
- For some fixed and uncontrollable
 - error ε_o (<1/2)
 - confidence δ_o (<1/2)

And this on an arbitrary distribution of data entries

Weak learnability=Strong (PAC) learnability

- Assume there exists a weak learner
 - it is better that a random guess (50 %) with confidence higher than 50 % on any data distribution

Ouestion:

- Is problem also PAC-learnable?
- Can we generate an algorithm P that achieves an arbitrary (ε-δ) accuracy?

Why is important?

- Usual classification methods (decision trees, neural nets), have specified, but uncontrollable performances.
- Can we improve performance to achieve any pre-specified accuracy (confidence)?

CS 2750 Machine Learning

Weak=Strong learnability!!!

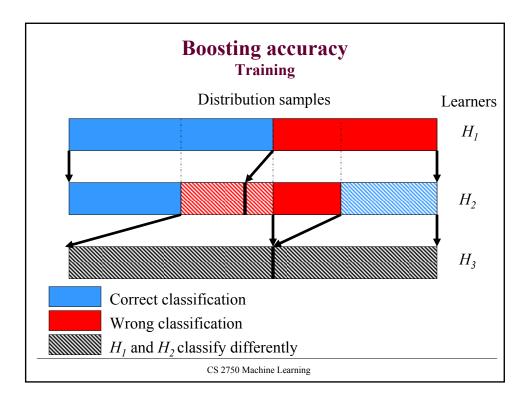
· Proof due to R. Schapire

An arbitrary (ε - δ) improvement is possible

Idea: combine multiple weak learners together

- Weak learner W with confidence δ_{o} and maximal error ϵ_{o}
- It is possible:
 - To improve (boost) the confidence
 - To improve (boost) the accuracy

by training different weak learners on slightly different datasets



Boosting accuracy

Training

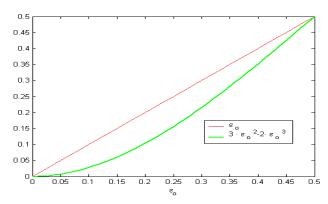
- Sample randomly from the distribution of examples
- Train hypothesis H_I on the sample
- Evaluate accuracy of H_I on the distribution
- Sample randomly such that for the half of samples H_1 provides correct, and for another half, incorrect results; Train hypothesis H_2 .
- Train H_3 on samples from the distribution where H_1 and H_2 classify differently

Test

– For each example, decide according to the majority vote of H_1 , H_2 and H_3

Theorem

- If each hypothesis has an error ε_o , the final classifier has error $< g(\varepsilon_o) = 3 \varepsilon_o^2 2\varepsilon_o^3$
- Accuracy improved !!!!
- Apply recursively to get to the target accuracy !!!



CS 2750 Machine Learning

Theoretical Boosting algorithm

- Similarly to boosting the accuracy we can boost the confidence at some restricted accuracy cost
- The key result: we can improve both the accuracy and confidence
- Problems with the theoretical algorithm
 - A good (better than 50 %) classifier on all data problems
 - We cannot properly sample from data-distribution
 - The method requires a large training set
- Solution to the sampling problem:
 - Boosting by sampling
 - AdaBoost algorithm and variants

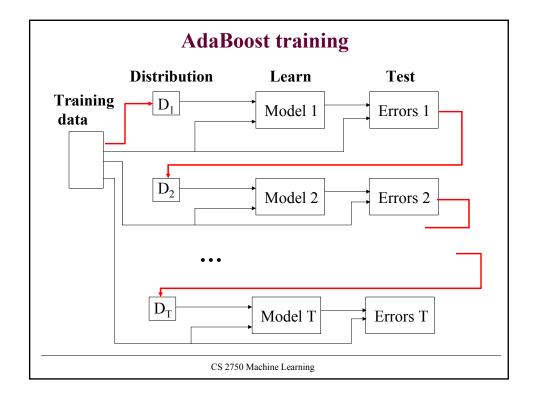
AdaBoost

- AdaBoost: boosting by sampling
- Classification (Freund, Schapire; 1996)
 - AdaBoost.M1 (two-class problem)
 - AdaBoost.M2 (multiple-class problem)
- **Regression** (Drucker; 1997)
 - AdaBoostR

CS 2750 Machine Learning

AdaBoost

- Given:
 - A training set of *N* examples (attributes + class label pairs)
 - A "base" learning model (e.g. a decision tree, a neural network)
- Training stage:
 - Train a sequence of T "base" models on T different sampling distributions defined upon the training set (D)
 - A sample distribution D_t for building the model t is constructed by modifying the sampling distribution D_{t-1} from the (t-1)th step.
 - Examples classified incorrectly in the previous step receive higher weights in the new data (attempts to cover misclassified samples)
- Application (classification) stage:
 - Classify according to the weighted majority of classifiers



AdaBoost algorithm

Training (step t)

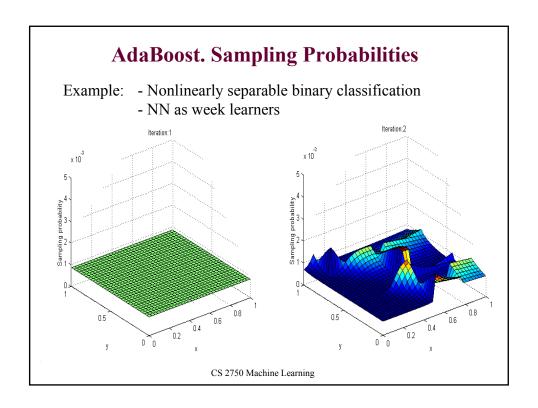
• Sampling Distribution D_t

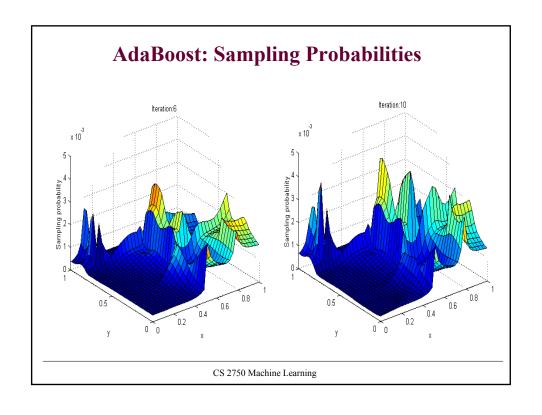
 $D_{t}(i)$ - a probability that example i from the original training dataset is selected

$$D_1(i) = 1 / N$$
 for the first step (t=1)

- Take K samples from the training set according to D_{t}
- Train a classifier h_t on the samples
- Calculate the error ε_t of h_t : $\varepsilon_t = \sum_{i:h_t(x_i)\neq y_i} D_t(i)$ Classifier weight: $\beta_t = \varepsilon_t/(1-\varepsilon_t)$
- New sampling distribution

$$D_{t+1}(i) = \frac{D_t(i)}{Z_t} \times \begin{cases} \beta_t & h_t(x_i) = y_i \\ 1 & \text{otherwise} \end{cases}$$





AdaBoost classification

- We have T different classifiers h_t
 - weight w_t of the classifier is proportional to its accuracy on the training set

$$w_{t} = \log(1/\beta_{t}) = \log((1-\varepsilon_{t})/\varepsilon_{t})$$

$$\beta_{t} = \varepsilon_{t}/(1-\varepsilon_{t})$$

• Classification:

For every class j=0,1

- Compute the sum of weights w corresponding to ALL classifiers that predict class j;
- Output class that correspond to the maximal sum of weights (weighted majority)

$$h_{final}(\mathbf{x}) = \arg \max_{j} \sum_{t:h_{t}(\mathbf{x})=j} w_{t}$$

CS 2750 Machine Learning

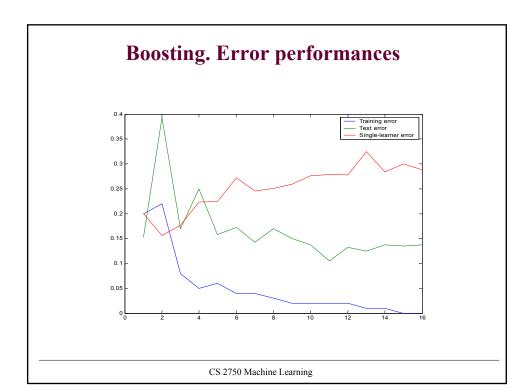
Two-Class example. Classification.

- Classifier 1 "yes" 0.7
- Classifier 2 "no" 0.3
- Classifier 3 "no" 0.2
- Weighted majority "yes" 0.7 0.5 = +0.2

• The final choose is "yes" + 1

What is boosting doing?

- Each classifier specializes on a particular subset of examples
- Algorithm is concentrating on "more and more difficult" examples
- · Boosting can:
 - Reduce variance (the same as Bagging)
 - But also to eliminate the effect of high bias of the weak learner (unlike Bagging)
- Train versus test errors performance:
 - Train errors can be driven close to 0
 - But test errors do not show overfitting
- Proofs and theoretical explanations in a number of papers



Bayesian model Averaging

- An alternative to combine multiple models: can be used for supervised and unsupervised frameworks
- For example:
 - Likelihood of the data can be expressed by averaging over the multiple models

$$P(D) = \sum_{i=1}^{N} P(D \mid M = m_i) P(M = m_i)$$

- Prediction:

$$P(y \mid x) = \sum_{i=1}^{N} P(y \mid x, M = m_i) P(M = m_i)$$