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Learning Bayesian belief networks

CS 2750 Machine Learning

Learning of BBN

Learning.
• Learning of parameters of conditional probabilities 
• Learning of the network structure
Variables:
• Observable – values present in every data sample
• Hidden – they values are never observed in data
• Missing values – values sometimes present, sometimes 

not
Already Covered: Learning of  parameters of BBN 

1. With observable variables
2. Hidden variables and missing values
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Model selection

• BBN has two components:
– Structure of the network (models conditional 

independences)
– A set of parameters (conditional child-parent 

distributions)
• How to learn the structure?
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Learning the structure
Criteria we can choose to score the structure S
• Marginal likelihood

• Maximum posterior probability
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Learning of BBNs
• Notation:

– i ranges over all possible variables i=1,..,n
– j=1,..,q ranges over all possible parent combinations
– k=1,..,r ranges over all possible variable values
– - parameters of the BBN
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Marginal likelihood

• Integrate over all possible parameter settings

• Using the assumption of parameter and sample independence

• We can use log-likelihood score instead
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Score is decomposable along variables !!!
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• Marginal likelihood

• From the iid assumption:

• Let ri = number of values that attribute xi can take
qi= number of possible parent combinations

Nijk= number of cases in D where xi has value k and parents with values j.
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Appendix: marginal likelihood
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• From parameter independence

• Priors for  
– is a vector of parameters;
– we use a Dirichlet distribution with parameters α
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Appendix: the marginal likelihood
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• Combine things together:

ΘΘ
Γ

Γ
⋅Θ= ∫ ∏
∏

∑
∏∏∏

=

−

=

= d
i

ijk

i

i

i i
ijk

r

k
ijkr

k
ijk

r

k
ijkn

i

q

j

r

k

N
ijk

1

1

1

1

)(

)(
α

α

α

ΘΘΘ= ∫
Θ

dSPSDPSDP iii )|(),|()|(

ΘΘ
Γ

Γ
=∏∏ ∫∏

∏

∑
=

−+

=

= d
n

i

q

j

r

k

N
ijkr

k
ijk

r

k
ijki i

ijkijk

i

i

1

1

1

1

)(

)(
α

α

α

)(

)(

)(

)( 1

1

ijij

r

k
ijkijkn

i

q

j
r

k
ijk

ij

N

Na
i

i

i +Γ

+Γ
⋅

Γ

Γ
=

∏
∏∏

∏
=

=

α
α

α

Appendix: marginal likelihood
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A trick to compute the marginal likelihood

• Integrate over all possible parameter settings

• Posterior of parameters, given data and the structure

• Gives the solution
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Learning the structure

• Likelihood of data for the BBN (structure and parameters)

measures the goodness of fit of the BBN to data

• Marginal likelihood (for the structure only)

• Does not measure only a goodness of fit. It is: 
– different for structures of different complexity
– Incorporates preferences towards simpler structures, 

implements Occam’s razor !!!!
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Occam’s Razor

• Why there is a preference towards simpler structures ?

Interpretation: in more complex structures there are more ways 
parameters can be set badly
– The numerator: count of good assignments
– The denominator: count of all assignments
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Approximations of probabilistic scores

Approximations of the marginal likelihood and posterior scores 
• Information based measures

– Akaike criterion
– Bayesian information criterion (BIC)
– Minimum description length (MDL)

• Reflect the tradeoff between the fit to data and preference 
towards simpler structures

Example: Akaike criterion.      
Maximize:

Maximize:

compl(S)),,|(log)( −Θ= ξMLSDPSscore
Bayesian information criterion (BIC)

logN compl(S)
2
1),,|(log)( −Θ= ξMLSDPSscore
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Optimizing the structure

Finding the best structure is a combinatorial optimization
problem

• A good feature: the score is decomposable along variables:

Algorithm idea: Search the space of structures using local 
changes (additions and deletions of a link) 

Advantage:
– we do not have to compute the whole score from scratch
– Recompute the partial score for the affected variable 
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Optimizing the structure. Algorithms

• Greedy search
– Start from the structure with no links
– Add a link that yields the best score improvement

• Metropolis algorithm (with simulated annealing)
– Local additions and deletions
– Avoids being trapped in “local” optimal 

CS 2750 Machine Learning

Dimensionality reduction
Feature selection
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Dimensionality reduction. Motivation.

• Is there a lower dimensional representation of the data 
that captures well its characteristics?

• Assume:
– We have an data                              such that 

– Assume  the dimension d of the data point x is very large
– We want to analyze x

• Methods of analysis are sensitive to the dimensionality d
• Our goal:

– Find a lower dimensional representation of data d’

}{ N21 x,..,x,x
),..,,( 21 d

iiii xxx=x
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Principal component analysis (PCA)

• Objective: We want to replace a high dimensional input with 
a small set of features (obtained by combining inputs)

• PCA:
– A linear transformation of d dimensional input x to M 

dimensional feature vector z such that                 under 
which the retained variance is maximal.

– Equivalently it is the linear projection for which the sum of 
squares reconstruction cost is minimized.

dM <
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PCA
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PCA
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PCA
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PCA
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Principal component analysis (PCA)

• PCA:
– linear transformation of d dimensional input x to M 

dimensional feature vector z such that               under which 
the retained variance is maximal.

– Task independent
• Fact:

– A vector x can be represented using a set of orthonormal
basis vectors u 

– Leads to transformation of coordinates  (from x to z using 
u’s)
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PCA

• Idea: replace d coordinates with M of coordinates to 
represent x. We want to find the subset M of basis vectors.

• How to choose the best set of basis vectors?
– We want the subset that gives the best approximation of 

data x in the dataset on average (we use least squares fit)
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PCA

• Differentiate the error function with regard to all         and 
set equal to 0 we get:

• Then we can rewrite:

• The error function is optimized when basis vectors satisfy: 

The best M basis vectors: discard  vectors with d-M smallest 
eigenvalues (or keep vectors with M largest eigenvalues)

Eigenvector         – is called a principal component
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PCA

• Once eigenvectors       with largest eigenvalues are identified, 
they are used  to transform the original d-dimensional data to 
M dimensions

• To find the “true” dimensionality of the data d’ we can just 
look at eigenvalues that contribute the most (small eigenvalues
are disregarded)

• Problem: PCA is a linear method. The “true” dimensionality 
can be overestimated. There can be non-linear correlations.
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