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Learning of BBN

Learning.

* Learning of parameters of conditional probabilities
* Learning of the network structure

Variables:

* Observable — values present in every data sample

* Hidden — they values are never observed in data

* Missing values — values sometimes present, sometimes
not

Already Covered: Learning of parameters of BBN

1. With observable variables
2. Hidden variables and missing values
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Model selection

* BBN has two components:

— Structure of the network (models conditional
independences)

— A set of parameters (conditional child-parent
distributions)

» How to learn the structure?
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Learning the structure

Criteria we can choose to score the structure S
* Marginal likelihood
maximize P(D |S.,¢)

& - represents the prior knowledge
* Maximum posterior probability
maximize P(S|D,¢)

P(D|S,6)P(S|S)

P1D.¢)= P(D [&)

How to compute marginal likelihood P(D | S,&) ?

CS 2750 Machine Learning




Learning of BBNs

* Notation:
— i ranges over all possible variables i=1,..,n
— j=1,..,q ranges over all possible parent combinations
— k=1,..,r ranges over all possible variable values

-0 - parameters of the BBN

®, isavector of ®, representing parameters of the conditional

probability distribution; such that Z 0, =1

. k=1
N, -anumber of instances in the dataset where parents
of variable X; take on values j and X; has value k
N, = kz Ny
=1

Ay - prior counts (parameters of Beta and Dirichlet priors)

.
a; = Z i
J—1
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Marginal likelihood

* Integrate over all possible parameter settings
P(D|S,£)=[P(D|S,0,5)p(0]S5,£)dO
(C]

» Using the assumption of parameter and sample independence

oy Tey) A Tlay + Ny
P(D|S’§)_HHF(C¥U+NU)H F(a,-,-k)

i=1 j=1 k=1

» We can use log-likelihood score instead

n @ Ia. 7 T ” Nijk

i=1 | j=1 k=1

Score is decomposable along variables !!!
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Appendix: marginal likelihood
* Marginal likelihood

P(D|S,£)=[P(D|S,0,5)p(®S5,£)dO
®
* From the iid assumption:

N n
P(D|S§,0)= HHP(x,.h | parents!,®)
h=l izl
» Letr, = number of values that attribute x; can take
q;= number of possible parent combinations
N;;= number of cases in D where x; has value k and parents with values j.

B ﬁﬁﬁP(xi = k| parents, = j,0)""
ij ok
n q,;

i i
N,
J— ijk
=1111116x
i k

J
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Appendix: the marginal likelihood
P(D|S,&)=[P(D]5,0,5)p(®]S,)dO

* From parameter independence
n qi
p@18.5)=]111r®©;15.9
i=1 j=I
e Priors for p(®[j 1S,¢)
- ®ij = (@ij1 yees ®,Aj,f) is a vector of parameters;
— we use a Dirichlet distribution with parameters a
P(©;[S,8)=P(©,,...0, |S,5)=Dir(©,,...0

F(Z aijk) %

k= a1
= 7 : H ®i/1f,k
k=1
[1T(a;)
k=1

ir; ir; | a)
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Appendix: marginal likelihood

* Combine things together:
P(D|S,)=[P(D|S,,0)P(®]S,)d®
o) 7
F(Za”k) "

n q; ;
=[TIIIIIew —=—TIej "
i)k Hr(azjk) k=1

n_ g F(Zaijk) 7 v 1
k= ik T~
T e e
aijk
k=1

a () gr(aiik +Ny)
j

-T1 :
AL (e, +N,;)
gr(a”k) S
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A trick to compute the marginal likelihood

* Integrate over all possible parameter settings

P(D|S,£)=[P(D|S,0,£)p(0]S,£)d0

* Posterior of parameters, given data and the structure
P(D|0,S,5)pO]S,%)
A(DIS,5)

p@O|D,S, &)=
Trick
P(D|0,S5,5)p(@]S,5)

A1 =— eID.5.8

* @Gives the solution
ne T(ey) & T(ay +Ny)

P015.0 =TT T T

=1 j=1 i) k=1 r(aijk)
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Learning the structure

Likelihood of data for the BBN (structure and parameters)
P(D|S,0,¢)

measures the goodness of fit of the BBN to data

Marginal likelihood (for the structure only)
P(D|S,5)

Does not measure only a goodness of fit. It is:
— different for structures of different complexity

— Incorporates preferences towards simpler structures,
implements Occam’s razor !!!!
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Occam’s Razor

* Why there is a preference towards simpler structures ?
Rewrite marginal likelihood as

IP(DIS,®,§)p(®|S,§)d®
P(D]S,5) ==

[p(@]5,£)d0

Weknow that [ p(©]5,£)d0 =1
(€]

Interpretation: in more complex structures there are more ways
parameters can be set badly

— The numerator: count of good assignments
— The denominator: count of all assignments
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Approximations of probabilistic scores

Approximations of the marginal likelihood and posterior scores
* Information based measures

— Akaike criterion

— Bayesian information criterion (BIC)

— Minimum description length (MDL)

» Reflect the tradeoff between the fit to data and preference
towards simpler structures

Example: Akaike criterion.

Maximize: score(S)=1logP(D|S,0,,,&)—compl(S)

Bayesian information criterion (BIC)
Maximize:

score(S)=1og P(D|S,0,,,5)— %compl(S) logN
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Optimizing the structure

Finding the best structure is a combinatorial optimization
problem

* A good feature: the score is decomposable along variables:

i I'(ay; + Ny
logP(D|S,§)—Z{z og +])v)+210gw;’(+“)')}

i=1

Algorithm idea: Search the space of structures using local
changes (additions and deletions of a link)

TN NN

Advantage:
— we do not have to compute the whole score from scratch
— Recompute the partial score for the affected variable
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Optimizing the structure. Algorithms

*  Greedy search
— Start from the structure with no links
— Add a link that yields the best score improvement

R N N P AN SR VAN

@)

*  Metropolis algorithm (with simulated annealing)
— Local additions and deletions
— Avoids being trapped in “local” optimal

N P N T R N W VAN

O O
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Dimensionality reduction
Feature selection
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Dimensionality reduction. Motivation.

* Is there a lower dimensional representation of the data
that captures well its characteristics?

* Assume:
— Wehave an data  {x,,X,,.., Xy} such that
X, =(x},x] ., x)
— Assume the dimension d of the data point x is very large
— We want to analyze x

Methods of analysis are sensitive to the dimensionality d
* QOur goal:
— Find a lower dimensional representation of data d’
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Principal component analysis (PCA)

* Objective: We want to replace a high dimensional input with
a small set of features (obtained by combining inputs)

e PCA:

— A linear transformation of d dimensional input x to M
dimensional feature vector z such that A/ < 4 under
which the retained variance is maximal.

— Equivalently it is the linear projection for which the sum of
squares reconstruction cost is minimized.
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PCA
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PCA
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PCA
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PCA

50

0.04x+ 0.06y- 0.99z
0.70x+0.70y+0.07z
97% variance retained
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Principal component analysis (PCA)

e PCA:

— linear transformation of d dimensional input x to M
dimensional feature vector z such that 3/ < 4 under which
the retained variance is maximal.

— Task independent
* Fact:
— A vector x can be represented using a set of orthonormal
basis vectors u d
x=Y zu,
i=l1

— Leads to transformation of coordinates (from x to z using
u’s)
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PCA

 Idea: replace d coordinates with M of z, coordinates to
represent x. We want to find the subset M of basis vectors.

M d
X :Zziui+ Zbiui
i=1 i=M +1

b. - constant and fixed

* How to choose the best set of basis vectors?
— We want the subset that gives the best approximation of
data x in the dataset on average (we use least squares fit)

d
Error for data entry x" x" —-X" = Z(zl.”—bl.)ui
i=M +1

d

1 N
SRRl EE WD
1

n=1l i=M+

N
EM:%;‘
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PCA

Differentiate the error function with regard to all b, and
set equal to 0 we get:

b—IZN:z"—uTi i—IZN:X"
CoNET N =5
Then we can rewrite:
1 . T S n = n T
EM:EZ“!‘ Yu, Z:Z(X -X)(x" - X)
i=M +1 n=1
The error function is optimized when basis vectors satisfy:
1 d
Xu,=4Au, EMZEZ)LI‘

i=M +1

The best M basis vectors: discard vectors with d-M smallest

eigenvalues (or keep vectors with M largest eigenvalues)

Eigenvector u; — is called a principal component
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PCA

Once eigenvectors u; with largest eigenvalues are identified,
they are used to transform the original d-dimensional data to
M dimensions

X
To find the “true” dimensionality of the data d’ we can just
look at eigenvalues that contribute the most (small eigenvalues
are disregarded)

Problem: PCA is a linear method. The “true” dimensionality
can be overestimated. There can be non-linear correlations.
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