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Learning probability distribution

Basic learning settings:
* A setof random variables X={X,X,,..., X}
* A model of the distribution over variables in X

with parameters ©
e Data D={D,D,,..D,}

st D =(x],x5,...x))

Objective: find parameters © that describe the data
Assumptions considered so far:

— Known parameterizations

— No hidden variables

— No-missing values
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Hidden variables

Modeling assumption:
Variables X={X,,X,,....,X,}
» Additional variables are hidden — never observed in data
Why to add hidden variables?
* More flexibility in describing the distribution P(X)
* Smaller parameterization of P(X)

— New independences can be introduced via hidden

variables
Hidden class variable
Example: N
» Latent variable models
— hidden classes (categories) P(X|C =)
X
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Naive Bayes with a hidden class variable

Introduction of a hidden variable can reduce the number of
parameters defining P(X)

Example:
» Naive Bayes model with a hidden class variable

Hidden class variable

\ ¢ Attributes are independent

given the class

O

X, X, .. X

n

* Useful in customer profiles
— Class value = type of customers
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Missing values

A set of random variables X={X,X,,....,X,}
« Data D={D,,D,,.,D,}
* But some values are missing
D, =(x],x5,...x})
Missing value of X,
D, =", X

. . I l j l
Missing values of x,",x;"

Etc.

* Example: medical records
« We still want to estimate parameters of P(X)
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Density estimation

~

Goal: Find the set of parameters @
Estimation criteria:
- ML max p(D|0,¢)
—Bayesian P(©|D,¢)
Optimization methods for ML: gradient-ascent, conjugate
gradient, Newton-Rhapson, etc.

Problem: No or very small advantage from the structure of the
corresponding belief network when unobserved variable values

Expectation-maximization (EM) method
— An alternative optimization method
— Suitable when there are missing or hidden values
— Takes advantage of the structure of the belief network
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General EM

The key idea of a method:

Compute the parameter estimates iteratively by performing the
following two steps:

Two steps of the EM:

1. Expectation step. Complete all hidden and missing variables
with expectations for the current set of parameters @'

2. Maximization step. Compute the new estimates of @ for
the completed data

Stop when no improvement possible
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EM

Let H—be a set of hidden or missing values
Derivation

P(H,D|0©,5)=P(H|[D,0,5)P(D]0,$)
log P(H,D|0®,{)=1log P(H |D,0,{)+1og P(D|0,¢)
log P(D|0®,¢)=1log P(H,D|®,)—-log P(H | D,0,¢)

== Log-likelihood of data
Average both sides with P(H |D,0',£) for some O
EpelogP(D[0,8)=E ) o log P(H,D[0,5)—Eyyp o log P(H | 0,6)
log P(D]0,5)=0(0[0")+H(0]0")

Log-likelihood of data
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EM algorithm

Algorithm (general formulation)

Initialize parameters ©®
Repeat
Set O'=0
1. Expectation step

0©]0")=Ey), o log P(H,D|0,5)
2. Maximization step

® =arg max Q(0O |O")

&)

until no or small improvementin ® (® = @"')

Questions: Why this leads to the ML estimate ?
What is the advantage of the algorithm?
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EM algorithm

* Why is the EM algorithm correct?

e Claim: maximizing Q improves the log-likelihood
[(©)=0(0[06')+H(®|06")

Difference in log-likelihoods (current and next step)

[(©)-1(0")=0(0]0")-0(0'6")+H(6|60")-H(0'6")

Subexpression H(® |0')-H(O®'1©')>0
Kullback-Leibler (KL) divergence (distance between 2 distributions)
KL(P|R)=>_ P log R—" >0 Isalways positive !!
H(©|0")=-E,)qlog P(H|0,D,&) = —Z p(H|D,®")log P(H [©,D,¢)

’ P(H|©',D,%) _

H(0]0)-H(0'0=3 P(H|D,0)log o m 2>
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EM algorithm

Difference in log-likelihoods
[(©)-1(0")=0(0]0")-0(0'6")+H(®|0")-H(0'6")
[(©)-1(0")20(0|6")-0(6'0")
Thus
by maximizing Q we maximize the log-likelihood
[(©)=0(0]0")+H(O]0)
EM is a first-order optimization procedure

* Climbs the gradient
* Automatic learning rate

No need to adjust the learning rate !!!!
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EM advantages

Key advantages:
* In many problems (e.g. Bayesian belief networks)

0(@[0")=E, e log P(H,D[0,5)

— has a nice form and the maximization of Q can be carried
out in the closed form

* No need to compute Q before maximizing
* We directly optimize

— using quantities corresponding to expected counts
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Naive Bayes with a hidden class and
missing values

Assume:

« P(X) is modeled using a Naive Bayes model with hidden class
variable

» Missing entries (values) for attributes in the dataset D

Hidden class variable

(X € Attributes are independent
/g \ given the class
O
X, X, ... X,
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EM for the Naive Bayes

* We can use EM to learn the parameters
0(00") = E, 0 log P(H,D|©,&)

* Parameters:

7 ; prior on class j

0, probability of an attribute i having value k given class j
* Indicator variables:

o jl for example /, the class is j ; if true (=1) else false (=0)

o ,.jkl for example /, the class is j and the value of attrib i is &

* because the class is hidden and some attributes are missing, the
values (0,1) of indicator variables are not known; they are
hidden

H — a collection of all indicator variables
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EM for the Naive Bayes model

» We can use EM to do the learning of parameters
00]0")=Ey e log P(H,D|0,5)

N ; ,
log P(H,D|0,5) =log [ [T~} TTT105
=1 ik

N
2. (5 logz; + > > 5y log )
=1 Tk

1 i

N
Eype 10gP(H,D|©,E)=> "> (Ey o (S)10gr, + YD Eyyp o (571086,
ik

=
EH\D,Q'(5;): r(C,=jlD,;,0") Substitutes 0,1
E e 51;1() = p(X, =k,C, = j| D,,0') with expected value
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EM for Naive Bayes model

» Computing derivatives of @ for parameters and setting it to 0

we get: ~ N,

T . = Nj eijk = 7 Lk

' N Ni/'k
k=1
N N ! - . ,
N, = Eupe(d))=2, p(C,=j|D,,0"
N le:1 l v =1
Nijk :Z EH\D,@'(ayk) :Z p(X, =k,C,=j|D,0"
1=l =

* In class exercise: Obtain the above results.
* Important:
— Use expected counts instead of counts !!!
— Re-estimate the parameters using expected counts
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EM for BBNs

The same result applies to learning of parameters of any
Bayesian belief network with discrete-valued variables

000" =Ey o log P(H,D|0,5)

N,
ijk . e .

0, =——"— «— Parameter value maximizing Q

>

k=1
N = I I

— _ _ s 1 [

Ny =2, p(x; =k,pa; = j|D",0"

I=1

. may require inference
Again:

— Use expected counts instead of counts
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Gaussian mixture model
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Mixture of Gaussians

 Density function for the Mixture of Gaussians model
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Gaussian mixture model

Probability of occurrence of a data point x

is modeled as P(C)
p(x) =2 p(C=ipx|C=i) C

where - p(X|C=i)
p(C =1i) X

= probability of a data point coming
from class C=i
p(X | C= i) ~ N(uiazi)
= class conditional density (modeled as a Gaussian)
for class I
Special feature: C is hidden !!!!
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Generative Naive Bayes classifier model

* Generative classifier model based on the Naive Bayes
* Assume the class labels are known. The ML estimate is

21

e class C
~ N,
7, =—t

N C=1 C=2
~ 1
B, =— X;

N, J:Cy=i ’

n,X, n,,x,

~ 1 T
Y =— X.—u.)(x.—nu.
1 Nijcl:i( J uz)( J l‘l’z)
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Gaussian mixture model

* In the Gaussian mixture Gaussians are not labeled
* We can apply EM algorithm:
— re-estimation based on the class posterior

1 ' C =il0® X CZi,@'
hy = p(C, =i|x,,0" = —PE=1O)Ptu |G, )

Zp(cl =u|0")p(x, |C, =u,0")

u=l1

N.=> h
i z] 11\

Count replaced with the expected count

B, = _z hilx‘
‘:_Zhll(x ll'z (X _ll'z)
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Gaussian mixture algorithm

* Special case: fixed covariance matrix for all hidden groups
(classes) and uniform prior on classes

* Algorithm:
Initialize means p, for all classes i
Repeat two steps until no change in the means:

1. Compute the class posterior for each Gaussian and each
point (a kind of responsibility for a Gaussian for a point)
p(C, =i[®Yp(x, [C,=i,0")
Z p(C=ul®)p(x,|C,=u,0")

2. Move the means of the Gaussians to the center of the data,
weighted by the responsibilities ul

Responsibility: hy =

New mean: p,= =
1
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Gaussian mixture model. Gradient ascent.

* A set of parameters

© = 1), 7y L ooty |
Assume unit variance terms and fixed priors

p(C)
@ c

P(x|C=i)=Q2r)" exp{—%”x —,ul.||2} p(x|C)

N

S 1/2 1 2 O )
P(D|©)=]] 2 7,(27) exp{—gllxl — i }

=1 i=1

s d 1
(@)= log 3 7,(2m)™"" exp{_5||x, - u,»llz}

01(®)

N
= Z hy(x, — ;) - very easy on-line update
ou, I=1
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