
1
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CS 2750 Machine Learning
Lecture 13

Milos Hauskrecht
milos@cs.pitt.edu
5329 Sennott Square

Bayesian belief networks

CS 2750 Machine Learning

Midterm exam

When:  Wednesday, March 2, 2011

Midterm is:
• In-class (75 minutes) 
• closed book 
• material covered during the semester including lecture 

today 
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CS 2750 Machine Learning

Project proposals

Due: Wednesday, March 16, 2011
• 1 page long
Proposal 
• Written proposal:

1. Outline of a learning problem, type of data you have 
available. Why is the problem important?

2. Learning methods you plan to try and implement for the 
problem.  References to previous work.

3. How do you plan to test, compare learning approaches
4. Schedule of work (approximate timeline of work)

CS 2750 Machine Learning

Bayesian belief networks (BBNs)

Bayesian belief networks.
• Represent the full joint distribution over the variables more 

compactly with a smaller number of parameters. 
• Take advantage of conditional and marginal independences

among random variables

• A and B are independent

• A and B are conditionally independent given C
)()(),( BPAPBAP =

)|()|()|,( CBPCAPCBAP =
)|(),|( CAPBCAP =
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CS 2750 Machine Learning

Bayesian belief network

Burglary Earthquake

JohnCalls MaryCalls

Alarm

P(B) P(E)

P(A|B,E)

P(J|A) P(M|A)

1. Directed acyclic graph
• Nodes = random variables

Burglary, Earthquake, Alarm, Mary calls and John calls
• Links = direct (causal) dependencies between variables.

The chance of Alarm being is influenced by Earthquake, 
The chance of John calling is affected by the Alarm

CS 2750 Machine Learning

Bayesian belief network

2. Local conditional distributions 
• relate variables and their parents

Burglary Earthquake

JohnCalls MaryCalls

Alarm

P(B) P(E)

P(A|B,E)

P(J|A) P(M|A)
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Bayesian belief network

Burglary Earthquake

JohnCalls MaryCalls

Alarm

B   E T       F

T   T 0.95   0.05
T   F     0.94   0.06
F   T     0.29   0.71
F   F     0.001 0.999

P(B)

0.001 0.999

P(E)

0.002  0.998

A   T      F

T    0.90  0.1
F    0.05  0.95

A      T      F

T    0.7    0.3
F    0.01   0.99

P(A|B,E)

P(J|A) P(M|A)

T        F T         F

CS 2750 Machine Learning

Full joint distribution in BBNs

Full joint distribution is defined in terms of local conditional 
distributions (obtained via the chain rule):

))(|(),..,,(
,..1

21 ∏
=

=
ni

iin XpaXXXX PP

M

A

B

J

E

====== ),,,,( FMTJTATETBP

Example:

)|()|(),|()()( TAFMPTATJPTETBTAPTEPTBP =========

Then its probability is:

Assume the following assignment
of values to random variables

FMTJTATETB ===== ,,,,
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CS 2750 Machine Learning

Bayesian belief networks (BBNs)

Bayesian belief networks 
• Represent the full joint distribution over the variables more 

compactly using the product of local conditionals. 
• But how did we get to local parameterizations?
Answer:
• Graphical structure encodes conditional and marginal 

independences among random variables
• A and B are independent
• A and B are conditionally independent given C

• The graph structure implies the decomposition !!!

)()(),( BPAPBAP =

)|()|()|,( CBPCAPCBAP =
)|(),|( CAPBCAP =

CS 2750 Machine Learning

Independences in BBNs
3 basic independence structures:

Burglary

JohnCalls

Alarm

Burglary

Alarm

Earthquake

JohnCalls

Alarm

MaryCalls

1. 2. 3.
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Independences in BBNs

1. JohnCalls is independent of Burglary given Alarm

Burglary

JohnCalls

Alarm

Burglary

Alarm

Earthquake

JohnCalls

Alarm

MaryCalls

1. 2. 3.

)|(),|( AJPBAJP =
)|()|()|,( ABPAJPABJP =

CS 2750 Machine Learning

Independences in BBNs

2.   Burglary is independent of Earthquake (not knowing Alarm) 
Burglary and Earthquake become dependent given Alarm !!

Burglary

JohnCalls

Alarm

JohnCalls

Alarm

MaryCalls

1. 3.

)()(),( EPBPEBP =

Burglary

Alarm

Earthquake

2.



7

CS 2750 Machine Learning

Independences in BBNs

3.   MaryCalls is independent of JohnCalls given Alarm

Burglary

JohnCalls

Alarm

Burglary

Alarm

Earthquake

1. 2.

JohnCalls

Alarm

3.

MaryCalls

)|(),|( AJPMAJP =

)|()|()|,( AMPAJPAMJP =

CS 2750 Machine Learning

Independence in BBN

• BBN distribution models many conditional independence 
relations relating distant variables and sets

• These are defined in terms of the graphical criterion called d-
separation

• D-separation in the graph
– Let X,Y and Z be three sets of nodes
– If X and Y are d-separated by Z then X and Y are 

conditionally independent given Z
• D-separation :

– A is d-separated from B given C if every undirected path 
between them is blocked

• Path blocking
– 3 cases that expand on three basic independence structures



8

CS 2750 Machine Learning

Undirected path blocking
A is d-separated from B given C if every undirected path 

between them is blocked

A BC

CS 2750 Machine Learning

Undirected path blocking
A is d-separated from B given C if every undirected path 

between them is blocked

A BC
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CS 2750 Machine Learning

Undirected path blocking
A is d-separated from B given C if every undirected path 

between them is blocked

• 1.  Path blocking with a linear substructure

Z in C

X Y

X in A Y in B

Z

A BC

CS 2750 Machine Learning

Undirected path blocking

A is d-separated from B given C if every undirected path 
between them is blocked

• 2.  Path blocking with the wedge substructure

Z in C
X Y

X in A Y in B

Z
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Undirected path blocking

A is d-separated from B given C if every undirected path 
between them is blocked

• 3.  Path blocking with the vee substructure

Z or any of its descendants not in C

X Y
X in A Y in B

Z

CS 2750 Machine Learning

Independences in BBNs

• Earthquake and Burglary are independent given MaryCalls ?

Burglary

JohnCalls

Alarm

Earthquake

MaryCalls

RadioReport
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CS 2750 Machine Learning

Independences in BBNs

• Earthquake and Burglary are independent given MaryCalls F
• Burglary and MaryCalls are independent (not knowing Alarm)   ?

Burglary

JohnCalls

Alarm

Earthquake

MaryCalls

RadioReport

CS 2750 Machine Learning

Independences in BBNs

• Earthquake and Burglary are independent given MaryCalls F
• Burglary and MaryCalls are independent (not knowing Alarm)   F
• Burglary and RadioReport are independent given Earthquake      ?

Burglary

JohnCalls

Alarm

Earthquake

MaryCalls

RadioReport
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CS 2750 Machine Learning

Independences in BBNs

• Earthquake and Burglary are independent given MaryCalls F
• Burglary and MaryCalls are independent (not knowing Alarm)   F
• Burglary and RadioReport are independent given Earthquake      T
• Burglary and RadioReport are independent given MaryCalls ?

Burglary

JohnCalls

Alarm

Earthquake

MaryCalls

RadioReport

CS 2750 Machine Learning

Independences in BBNs

• Earthquake and Burglary are independent given MaryCalls F
• Burglary and MaryCalls are independent (not knowing Alarm)   F
• Burglary and RadioReport are independent given Earthquake      T
• Burglary and RadioReport are independent given MaryCalls F

Burglary

JohnCalls

Alarm

Earthquake

MaryCalls

RadioReport
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CS 2750 Machine LearningCS 1571 Intro to AI

Bayesian belief networks (BBNs)

Bayesian belief networks 
• Represents the full joint distribution over the variables more 

compactly using the product of local conditionals. 
• So how did we get to local parameterizations?

• The decomposition is implied by the set of  independences 
encoded in the belief network.

))(|(),..,,(
,..1

21 ∏
=

=
ni

iin XpaXXXX PP

CS 2750 Machine Learning

Full joint distribution in BBNs

M

A

B

J

E

====== ),,,,( FMTJTATETBP

Rewrite the full joint probability using the 
product rule:
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Full joint distribution in BBNs

M

A

B

J

E

====== ),,,,( FMTJTATETBP

),,,(),,,|( FMTATETBPFMTATETBTJP ==========
),,,()|( FMTATETBPTATJP =======

Rewrite the full joint probability using the 
product rule:

CS 2750 Machine Learning

Full joint distribution in BBNs

M

A

B

J

E

====== ),,,,( FMTJTATETBP

),,,(),,,|( FMTATETBPFMTATETBTJP ==========
),,,()|( FMTATETBPTATJP =======

),,(),,|( TATETBPTATETBFMP =======
),,()|( TATETBPTAFMP =====

Rewrite the full joint probability using the 
product rule:
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Full joint distribution in BBNs

M

A

B

J

E

====== ),,,,( FMTJTATETBP

),,,(),,,|( FMTATETBPFMTATETBTJP ==========
),,,()|( FMTATETBPTATJP =======

),,(),,|( TATETBPTATETBFMP =======
),,()|( TATETBPTAFMP =====

),(),|( TETBPTETBTAP =====

Rewrite the full joint probability using the 
product rule:

CS 2750 Machine Learning

Full joint distribution in BBNs

M

A

B

J

E

====== ),,,,( FMTJTATETBP

),,,(),,,|( FMTATETBPFMTATETBTJP ==========
),,,()|( FMTATETBPTATJP =======

),,(),,|( TATETBPTATETBFMP =======
),,()|( TATETBPTAFMP =====

),(),|( TETBPTETBTAP =====
)()( TEPTBP ==

Rewrite the full joint probability using the 
product rule:
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Full joint distribution in BBNs

M

A

B

J

E

====== ),,,,( FMTJTATETBP

)()(),|()|()|( TEPTBPTETBTAPTAFMPTATJP ==========

),,,(),,,|( FMTATETBPFMTATETBTJP ==========
),,,()|( FMTATETBPTATJP =======

),,(),,|( TATETBPTATETBFMP =======
),,()|( TATETBPTAFMP =====

),(),|( TETBPTETBTAP =====
)()( TEPTBP ==

Rewrite the full joint probability using the 
product rule:

CS 2750 Machine Learning

# of parameters of the full joint: 

Parameter complexity problem
• In the BBN the full joint distribution is defined as:

• What did we save?
Alarm example: 5 binary (True, False) variables

Burglary

JohnCalls

Alarm

Earthquake

MaryCalls

))(|(),..,,(
,..1

21 ∏
=

=
ni

iin XpaXXXX PP

3225 =

3112 5 =−
One parameter is for free:
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# of parameters of the full joint: 

Parameter complexity problem
• In the BBN the full joint distribution is defined as:

• What did we save?
Alarm example: 5 binary (True, False) variables

Burglary

JohnCalls

Alarm

Earthquake

MaryCalls

))(|(),..,,(
,..1

21 ∏
=

=
ni

iin XpaXXXX PP

3225 =

3112 5 =−
One parameter is for free:

# of parameters of the BBN: ? 

CS 2750 Machine Learning

Bayesian belief network.

Burglary Earthquake

JohnCalls MaryCalls

Alarm

B   E T       F

T   T 0.95   0.05
T   F     0.94   0.06
F   T     0.29   0.71
F   F     0.001 0.999

P(B)

0.001 0.999

P(E)

0.002  0.998

A   T      F

T    0.90  0.1
F    0.05  0.95

A      T      F

T    0.7    0.3
F    0.01   0.99

P(A|B,E)

P(J|A) P(M|A)

T        F T         F

• In the BBN the full joint distribution is expressed using a set 
of local conditional distributions
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Bayesian belief network.

Burglary Earthquake

JohnCalls MaryCalls

Alarm

B   E T       F

T   T 0.95   0.05
T   F     0.94   0.06
F   T     0.29   0.71
F   F     0.001 0.999

P(B)

0.001 0.999

P(E)

0.002  0.998

A   T      F

T    0.90  0.1
F    0.05  0.95

A      T      F

T    0.7    0.3
F    0.01   0.99

P(A|B,E)

P(J|A) P(M|A)

T        F T         F

• In the BBN the full joint distribution is expressed using a set 
of local conditional distributions

2 2

8

4 4

CS 2750 Machine Learning

# of parameters of the full joint: 

Parameter complexity problem
• In the BBN the full joint distribution is defined as:

• What did we save?
Alarm example: 5 binary (True, False) variables

Burglary

JohnCalls

Alarm

Earthquake

MaryCalls

))(|(),..,,(
,..1

21 ∏
=

=
ni

iin XpaXXXX PP

3225 =

3112 5 =−
One parameter is for free:

# of parameters of the BBN:

20)2(2)2(22 23 =++
One parameter in every conditional is for free: 

?
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# of parameters of the full joint: 

Parameter complexity problem
• In the BBN the full joint distribution is defined as:

• What did we save?
Alarm example: 5 binary (True, False) variables

Burglary

JohnCalls

Alarm

Earthquake

MaryCalls

))(|(),..,,(
,..1

21 ∏
=

=
ni

iin XpaXXXX PP

3225 =

3112 5 =−
One parameter is for free:

# of parameters of the BBN:

20)2(2)2(22 23 =++

10)1(2)2(22 2 =++
One parameter in every conditional is for free: 

CS 2750 Machine Learning

Model acquisition problem

The structure of the BBN typically reflects causal relations
• BBNs are also sometime referred to as causal networks
• Causal structure is very intuitive in many applications domain 

and it is relatively easy to obtain from the domain expert

Probability parameters of BBN correspond to conditional 
distributions relating a random variable and its parents only

• Their complexity much smaller than the full joint
• Easier to come up (estimate) the probabilities from expert or 

automatically by learning from data
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BBNs built in practice

• In various areas:
– Intelligent user interfaces (Microsoft)
– Troubleshooting, diagnosis of a technical device
– Medical diagnosis:

• Pathfinder (Intellipath)
• CPSC
• Munin
• QMR-DT

– Collaborative filtering
– Military applications
– Insurance, credit applications

CS 2750 Machine Learning

Diagnosis of car engine

• Diagnose the engine start problem 



21

CS 2750 Machine Learning

Car insurance example

• Predict claim costs (medical, liability) based on application data

CS 2750 Machine Learning

(ICU) Alarm network
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CPCS
• Computer-based Patient Case Simulation system (CPCS-PM) 

developed by Parker and Miller (at University of Pittsburgh)
• 422 nodes and 867 arcs

CS 2750 Machine Learning

QMR-DT 

• Medical diagnosis in internal medicine

Bipartite network of disease/findings relations
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Inference in Bayesian networks 
• BBN models compactly the full joint distribution by taking 

advantage of existing independences between variables
• Simplifies the acquisition of a probabilistic model
• But we are interested in solving various inference tasks:

– Diagnostic task. (from effect to cause)

– Prediction task.  (from cause to effect)

– Other probabilistic queries (queries on joint distributions).

• Main issue: Can we take advantage of independences to 
construct special algorithms and speeding up the inference?

)|( TJohnCallsBurglary =P

)|( TBurglaryJohnCalls =P

)( AlarmP

CS 2750 Machine LearningCS 1571 Intro to AI

Inference in Bayesian network
• Bad news: 

– Exact inference problem in BBNs is NP-hard (Cooper)
– Approximate inference is NP-hard (Dagum, Luby)

• But very often we can achieve significant improvements
• Assume our Alarm network

• Assume we want to compute:

Burglary

JohnCalls

Alarm

Earthquake

MaryCalls

)( TJP =
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Inference in Bayesian networks
Computing:
Approach 1. Blind approach.
• Sum out all un-instantiated variables from the full joint, 
• express the joint distribution as a product of conditionals

Computational cost:
Number of  additions: ?
Number of products: ?

== )( TJP

)()(),|()|()|(
, , , ,

eEPbBPeEbBaAPaAmMPaATJP
FTb FTe FTa FTm

========== ∑ ∑ ∑ ∑
∈ ∈ ∈ ∈

),,,,(
, , , ,

mMTJaAeEbBP
FTb FTe FTa FTm

====== ∑ ∑ ∑ ∑
∈ ∈ ∈ ∈

)( TJP =

CS 2750 Machine LearningCS 1571 Intro to AI

Inference in Bayesian networks
Computing:
Approach 1. Blind approach.
• Sum out all un-instantiated variables from the full joint, 
• express the joint distribution as a product of conditionals

Computational cost:
Number of  additions: 15
Number of products: ?

== )( TJP

)()(),|()|()|(
, , , ,

eEPbBPeEbBaAPaAmMPaATJP
FTb FTe FTa FTm

========== ∑ ∑ ∑ ∑
∈ ∈ ∈ ∈

),,,,(
, , , ,

mMTJaAeEbBP
FTb FTe FTa FTm

====== ∑ ∑ ∑ ∑
∈ ∈ ∈ ∈

)( TJP =
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Inference in Bayesian networks
Computing:
Approach 1. Blind approach.
• Sum out all un-instantiated variables from the full joint, 
• express the joint distribution as a product of conditionals

Computational cost:
Number of  additions: 15
Number of products: 16*4=64

== )( TJP

)()(),|()|()|(
, , , ,

eEPbBPeEbBaAPaAmMPaATJP
FTb FTe FTa FTm

========== ∑ ∑ ∑ ∑
∈ ∈ ∈ ∈

),,,,(
, , , ,

mMTJaAeEbBP
FTb FTe FTa FTm

====== ∑ ∑ ∑ ∑
∈ ∈ ∈ ∈

)( TJP =

CS 2750 Machine LearningCS 1571 Intro to AI

Inference in Bayesian networks
Approach 2. Interleave sums and products
• Combines sums and product in a smart way (multiplications 

by constants can be taken out of the sum)

Computational cost:
Number of  additions: 1+2*[1+1+2*1]=?
Number of products: 2*[2+2*(1+2*1)]=?

== )( TJP

)](),|()[()|()|(
,, . ,

eEPeEbBaAPbBPaAmMPaATJP
FTeFTb FTa FTm

========== ∑∑ ∑ ∑
∈∈ ∈ ∈

]])(),|()[()][|()[|(
, , ,,
∑ ∑ ∑∑
∈ ∈ ∈∈

==========
FTm FTb FTeFTa

eEPeEbBaAPbBPaAmMPaATJP

)()(),|()|()|(
, , , ,

eEPbBPeEbBaAPaAmMPaATJP
FTb FTe FTa FTm

========== ∑ ∑ ∑ ∑
∈ ∈ ∈ ∈
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Inference in Bayesian networks
Approach 2. Interleave sums and products
• Combines sums and product in a smart way (multiplications 

by constants can be taken out of the sum)

Computational cost:
Number of  additions: 1+2*[1+1+2*1]=9
Number of products: 2*[2+2*(1+2*1)]=?

== )( TJP

)](),|()[()|()|(
,, . ,

eEPeEbBaAPbBPaAmMPaATJP
FTeFTb FTa FTm

========== ∑∑ ∑ ∑
∈∈ ∈ ∈

]])(),|()[()][|()[|(
, , ,,
∑ ∑ ∑∑
∈ ∈ ∈∈

==========
FTm FTb FTeFTa

eEPeEbBaAPbBPaAmMPaATJP

)()(),|()|()|(
, , , ,

eEPbBPeEbBaAPaAmMPaATJP
FTb FTe FTa FTm

========== ∑ ∑ ∑ ∑
∈ ∈ ∈ ∈

CS 2750 Machine LearningCS 1571 Intro to AI

Inference in Bayesian networks
Approach 2. Interleave sums and products
• Combines sums and product in a smart way (multiplications 

by constants can be taken out of the sum)

Computational cost:
Number of  additions: 1+2*[1+1+2*1]=9
Number of products: 2*[2+2*(1+2*1)]=16

== )( TJP

)](),|()[()|()|(
,, . ,

eEPeEbBaAPbBPaAmMPaATJP
FTeFTb FTa FTm

========== ∑∑ ∑ ∑
∈∈ ∈ ∈

]])(),|()[()][|()[|(
, , ,,
∑ ∑ ∑∑
∈ ∈ ∈∈

==========
FTm FTb FTeFTa

eEPeEbBaAPbBPaAmMPaATJP

)()(),|()|()|(
, , , ,

eEPbBPeEbBaAPaAmMPaATJP
FTb FTe FTa FTm

========== ∑ ∑ ∑ ∑
∈ ∈ ∈ ∈
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CS 2750 Machine LearningCS 1571 Intro to AI

Inference in Bayesian networks

• When cashing of results becomes handy?
• What if we want to compute a diagnostic query:

• Exactly probabilities we have just compared !!
• There are other queries when cashing and ordering of sums 

and products can be shared and saves computation

• General technique: Recursive decomposition

)(
),()|(

TJP
TJTBPTJTBP

=
==

===

),(
)(

),()|( TJB
TJP

TJBTJB ==
=
=

== PPP α

CS 2750 Machine LearningCS 1571 Intro to AI

Variable elimination

• Recursive decomposition:
– Interleave sum and products before inference

• Variable elimination:
– Similar idea but interleave sum and products one variable 

at the time during inference
– E.g. Query                 requires to eliminate A,B,E,M and 

this can be done in different order 

== )( TJP
)()(),|()|()|(

, , , ,
eEPbBPeEbBaAPaAmMPaATJP

FTb FTe FTa FTm
========== ∑ ∑ ∑ ∑

∈ ∈ ∈ ∈

)( TJP =
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Variable elimination
Assume order: M, E, B,A to calculate 

)()(),|()|()|(
, , , ,

eEPbBPeEbBaAPaAmMPaATJP
FTb FTe FTa FTm

========== ∑ ∑ ∑ ∑
∈ ∈ ∈ ∈

)( TJP =









========== ∑∑ ∑ ∑

∈∈ ∈ ∈ FTmFTb FTe FTa
aAmMPeEPbBPeEbBaAPaATJP

,, , ,
)|()()(),|()|(

1)()(),|()|(
, , ,
∑ ∑ ∑
∈ ∈ ∈

========
FTb FTe FTa

eEPbBPeEbBaAPaATJP

∑ ∑∑
∈ ∈∈









========

FTb FTeFTa
eEPeEbBaAPbBPaATJP

, ,,
)(),|()()|(

),()()|(
,

1
,

bBaAbBPaATJP
FTbFTa

====== ∑∑
∈∈

τ

∑ ∑
∈ ∈









======

FTa FTe
bBaAbBPaATJP

,
1

,
),()()|( τ

∑
∈

====
FTa

aAaATJP
,

2 )()|( τ

CS 2750 Machine LearningCS 1571 Intro to AI

Inference in Bayesian network

• Exact inference algorithms:
– Variable elimination
– Recursive decomposition (Cooper, Darwiche)
– Symbolic inference (D’Ambrosio)
– Belief propagation algorithm (Pearl)
– Clustering and joint tree approach (Lauritzen, 

Spiegelhalter)
– Arc reversal (Olmsted, Schachter)

• Approximate inference algorithms:
– Monte Carlo methods:

• Forward sampling, Likelihood sampling
– Variational methods 

Book

Book

Book
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Learning of BBN

Learning.
• Learning of parameters of conditional probabilities 
• Learning of the network structure
Variables:
• Observable – values present in every data sample
• Hidden – they values are never observed in data
• Missing values – values sometimes present, 

sometimes not

Next:
• Learning of  parameters of BBN
• All variables are observable 

CS 2750 Machine Learning

Estimation of parameters of BBN

• Idea: decompose the estimation problem for the full joint 
over a large number of variables to a set of smaller estimation 
problems corresponding to local parent-variable conditionals.  

• Example: Assume A,E,B are binary with True, False values

• Assumption that enables the decomposition: parameters of 
conditional distributions are independent

B E

A

P(A|B=T,E=T)

P(A|B,E)
P(A|B=T,E=F)

P(A|B=F,E=T)

P(A|B=F,E=F)

4  estimation problems
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Estimates of parameters of BBN

• Two assumptions that permit the decomposition:
– Sample independence

– Parameter independence

∏∏
= =

=
n

i

q

j
ij

i

DpDp
1 1

),|(),|( ξθξΘ

∏
=

=
N

u
uDPDP

1

),|(),|( ξξ ΘΘ

Parameters of each conditional (one for every assignment of
values to parent variables) can be learned independently

# of nodes
# of parents values

CS 2750 Machine Learning

Learning of BBN parameters. Example.

Example:

Pneumonia

CoughFeverPaleness High WBC

P(Pneumonia)

?         ?   

T         F

Pn T      F

T        ?      ?
F        ?      ?

P(HWBC|Pneum)

P(Cough|Pneum)P(Fever|Pneum)P(Palen|Pneum)

?         ?         ?         
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Learning of BBN parameters. Example.

Data D (different patient cases):
Pal  Fev Cou HWB  Pneu
T       T     T      T        F
T       F     F      F        F
F       F     T      T        T
F       F     T      F        T
F      T      T      T       T
T       F     T      F        F
F       F     F      F        F
T       T     F      F        F
T       T     T      T       T
F       T     F      T        T
T       F     F      T        F
F       T     F      F        F

Pneumonia

CoughFeverPaleness High WBC

CS 2750 Machine Learning

Estimates of parameters of BBN

• Much like multiple coin toss or roll of a dice problems. 
• A “smaller” learning problem corresponds to the learning of 

exactly one conditional distribution 
• Example:

• Problem: How to pick the data to learn?

)|( TPneumoniaFever =P
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CS 2750 Machine Learning

Estimates of parameters of BBN

Much like multiple  coin toss or roll of a dice problems. 
• A “smaller” learning problem corresponds to the learning of 

exactly one conditional distribution 
Example:

Problem: How to pick the data to learn?
Answer:

1. Select data points with Pneumonia=T
(ignore the rest)

2. Focus on (select) only values of the random variable 
defining the distribution  (Fever)

3. Learn the parameters of the conditional the same way as 
we learned the parameters for a coin or a dice

)|( TPneumoniaFever =P

CS 2750 Machine Learning

Learning of BBN parameters. Example.

Learn:
Step 1: Select data points with Pneumonia=T

Pal  Fev Cou HWB  Pneu
T       T     T      T        F
T       F     F      F        F
F       F     T      T        T
F       F     T      F        T
F      T      T      T       T
T       F     T      F        F
F       F     F      F        F
T       T     F      F        F
T       T     T      T       T
F       T     F      T        T
T       F     F      T        F
F       T     F      F        F

)|( TPneumoniaFever =P

Pneumonia

CoughFeverPaleness High WBC
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Learning of BBN parameters. Example.

Learn:
Step 1: Ignore the rest

Pal  Fev Cou HWB  Pneu
F       F     T      T        T
F       F     T      F        T
F      T      T      T       T
T       T     T      T       T
F       T     F      T        T

)|( TPneumoniaFever =P

Pneumonia

CoughFeverPaleness High WBC

CS 2750 Machine Learning

Learning of BBN parameters. Example.

Learn:
Step 2: Select values of the random variable defining the 

distribution of Fever

Pal  Fev Cou HWB  Pneu
F      F T      T        T
F       F T      F        T
F      T T      T       T
T       T T      T       T
F       T  F      T        T

)|( TPneumoniaFever =P

Pneumonia

CoughFeverPaleness High WBC
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CS 2750 Machine Learning

Learning of BBN parameters. Example.

Learn:
Step 2: Ignore the rest

Fev
F
F
T
T
T

)|( TPneumoniaFever =P

Pneumonia

CoughFeverPaleness High WBC

CS 2750 Machine Learning

Learning of BBN parameters. Example.

Learn:
Step 3a: Learning the ML estimate

Fev
F
F
T
T
T

)|( TPneumoniaFever =P

)|( TPneumoniaFever =P

0.6     0.4   

T         F

Pneumonia

CoughFeverPaleness High WBC
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Learning of BBN parameters. Bayesian learning.

Learn:
Step 3b: Learning the Bayesian estimate
Assume the prior

Fev
F
F
T
T
T

Posterior:

)|( TPneumoniaFever =P

Pneumonia

CoughFeverPaleness High WBC

)4,3(~| BetaTPneumoniaFever =θ

)6,6(~| BetaTPneumoniaFever =θ


