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Lecture 12

Milos Hauskrecht
milos@cs.pitt.edu
5329 Sennott Square

Bayesian belief networks

CS 2750 Machine Learning

Midterm exam

When:  Wednesday, March 2, 2011

Midterm is:
• In-class (75 minutes) 
• closed book 
• material covered during the semester including lecture 

today 



2

CS 2750 Machine Learning

Project proposals

Due: Wednesday, March 16, 2011
• 1 page long
Proposal 
• Written proposal:

1. Outline of a learning problem, type of data you have 
available. Why is the problem important?

2. Learning methods you plan to try and implement for the 
problem.  References to previous work.

3. How do you plan to test, compare learning approaches
4. Schedule of work (approximate timeline of work)

CS 2750 Machine Learning

Project proposals

Where to find the data: 
• From your research
• UC Irvine data repository
• Various text document repositories
• I have some bioinformatics data I can share but other data can 

be found on the NIH or various university web sites
(e.g. microarray data, proteomic data)

• Synthetic data that are generated to demonstrate your algorithm 
works
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Project proposals

Problems to address: 

• Get the ideas for the project by browsing the web
• It is tempting to go with simple classification but definitely try 

to add some complexity to your investigations
• Multiple, not just one method, try some more advanced 

methods, say those that combine multiple classifiers to learn a 
model (ensemble methods) or try to modify the existing 
methods

CS 2750 Machine Learning

Project proposals

Interesting problems to consider: 
• Advanced methods for learning multi-class problems
• Learning the parameters and structure of Bayesian Belief 

networks
• Clustering of data – how to group examples
• Dimensionality reduction/feature selection – how to deal with a 

large number of inputs 
• Learning how to act – Reinforcement learning 
• Anomaly detection – how to identify outliers in data
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Density estimation

Data: 

Attributes:
• modeled by random variables                                     with:

– Continuous values
– Discrete values

E.g. blood pressure with numerical values 
or chest pain with discrete values 

[no-pain, mild, moderate, strong]
Underlying true probability distribution:

},..,,{ 21 nDDDD =
iiD x= a vector of attribute values

},,,{ 21 dXXX K=X

)(Xp
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Density estimation
Data: 

Objective: try to estimate the underlying true probability 
distribution over variables       ,           ,  using examples in  D

Standard (iid) assumptions: Samples
• are independent of each other
• come from the same (identical) distribution (fixed          )

},..,,{ 21 nDDDD =
iiD x= a vector of attribute values

X

)(Xp },..,,{ 21 nDDDD =
n samplestrue distribution estimate

)(ˆ Xp

)(Xp

)(Xp
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Learning via parameter estimation

In this lecture we consider parametric density estimation
Basic settings:
• A set of random variables 
• A model of the distribution over variables in X

with parameters       : 

• Data

Objective: find the parameters        that explain best the observed 
data

},,,{ 21 dXXX K=X

Θ

},..,,{ 21 nDDDD =

Θ

)|(ˆ ΘXp
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Parameter estimation 
• Maximum likelihood (ML)

– yields: one set of parameters
– the target distribution is approximated as:

• Bayesian  parameter estimation
– uses the posterior distribution over possible parameters

– Yields: all possible  settings of          (and their “weights”) 
– The target distribution is approximated as: 

),|( ξΘDpmaximize

)|(
)|(),|(),|(

ξ
ξξξ

Dp
pDpDp ΘΘ

=Θ

MLΘ

Θ

)()(ˆ MLpp Θ|XX =

∫==
Θ

ΘΘΘ|XX dDpXpDpp ),|()|()()(ˆ ξ
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Parameter estimation
Other possible criteria:
• Maximum a posteriori probability (MAP)

– Yields: one set of parameters
– Approximation:

• Expected value of the parameter

– Expectation taken with regard to posterior
– Yields: one set of parameters
– Approximation:

maximize ),|( ξDp Θ (mode of the posterior)

MAPΘ

)(ˆ ΘΘ E=

)()(ˆ MAPpp Θ|XX =

),|( ξDp Θ

)ˆ()(ˆ Θ|XX pp =

(mean of the posterior)
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Density estimation
• So far we have covered density estimation for “simple”

distribution models:
– Bernoulli
– Binomial
– Multinomial
– Gaussian
– Poisson

But what if:
• The dimension of                                      is large

– Example: patient data
• Compact parametric distributions do not seem to fit the data

– E.g.: multivariate Gaussian may not fit
• We have only a “small” number of examples to do accurate 

parameter estimates 

},,,{ 21 dXXX K=X
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How to learn complex distributions

How to learn complex multivariate distributions            with large 
number of variables?

One solution:
• Decompose the distribution using conditional independence 

relations 
• Decompose the parameter estimation problem to a set of 

smaller parameter estimation tasks

Decomposition of distributions under conditional independence 
assumption is the main idea  behind Bayesian belief networks

)(ˆ Xp
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Example
Problem description:
• Disease: pneumonia
• Patient symptoms (findings, lab tests):

– Fever, Cough, Paleness, WBC (white blood cells) count, 
Chest pain, etc.

Representation of a patient case: 
• Symptoms and disease are represented as random variables
Our objectives: 
• Describe a multivariate distribution representing the 

relations between symptoms and disease
• Design of inference and learning procedures for the 

multivariate model
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Modeling uncertainty with probabilities

• Full joint distribution:
– Assume                                     are all random variables that 

define the domain
– Full joint:              or   

Full joint it is sufficient to do any type of probabilistic  
inference:

• Computation of joint probabilities for sets of variables 

• Computation of conditional probabilities

},,,{ 21 dXXX K=X

)(XP ),,,( 21 dXXXP K

),,( 321 XXXP ),( 101 XXP

),|( 321 FalseXTrueXXP ==
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Marginalization
Joint probability distribution (for a set variables)
• Defines probabilities for all possible assignments to values of 

variables in the set

)(WBCcountP

005.0 993.0 002.0

),( WBCcountpneumoniaP

high normal low

Pneumonia True
False

WBCcount

0008.0
0042.0

0001.0
9929.0

0001.0
0019.0

)(PneumoniaP

001.0
999.0

Marginalization (summing of rows, or columns)
- summing out variables

table32×
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Variable independence
• The joint distribution over a subset of variables can be 

always computed from the joint distribution through 
marginalization 

• Not the other way around !!! 
– Only exception: when variables are independent

)(WBCcountP
005.0 993.0 002.0

),( WBCcountpneumoniaP
high normal low

Pneumonia True
False

WBCcount

0008.0
0042.0

0001.0
9929.0

0001.0
0019.0

)(PneumoniaP

001.0
999.0

)()(),( BPAPBAP =
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Conditional probability

Conditional probability :
• Probability of A given B

• Conditional probability is defined in terms of joint probabilities
• Joint probabilities can be expressed in terms of conditional 

probabilities

• Conditional probability – is useful for various probabilistic 
inferences 

),,|( TrueCoughhighWBCcountTrueFeverTruePneumoniaP ====

)(
),()|(

BP
BAPBAP =

)()|(),( BPBAPBAP =

=),,( 21 nXXXP K ∏= −
n

i ii XXXP
1 1,1 )|( K

(product rule)

(chain rule)
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Inference

Any query  can be computed from the full joint distribution !!!
• Joint over a subset of variables is obtained through 

marginalization

• Conditional probability over a set of variables, given  other 
variables’ values is obtained through marginalization and 
definition of conditionals 

 ),,,(),( ∑∑ =======
i j

ji dDcCbBaAPcCaAP
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Inference

• Any joint probability can be expressed as a product of 
conditionals via the chain rule. 

• It is often easier to define the distribution in terms of conditional 
probabilities:
– E.g. 

)()|(),,( 1,11,121 −−= nnnn XXPXXXPXXXP KKK

)()|()|( 2,12,111,1 −−−−= nnnnn XXPXXXPXXXP KKK

∏= −=
n

i ii XXXP
1 1,1 )|( K

)|( TPneumoniaFever =P
)|( FPneumoniaFever =P
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Modeling uncertainty with probabilities

• Full joint distribution: joint distribution over all random 
variables defining the domain
– it is sufficient to represent the complete domain and to do 

any type of probabilistic  inferences 

Problems:
– Space complexity. To store full joint distribution requires 

to remember             numbers.
n – number of random variables, d – number of values

– Inference complexity. To compute some queries requires        
.            steps. 

– Acquisition problem. Who is going to define all of the 
probability entries?       

 )(dnO

 )(dnO
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Pneumonia example. Complexities.

• Space complexity. 
– Pneumonia (2 values: T,F), Fever (2: T,F), Cough (2: T,F), 

WBCcount (3: high, normal, low), paleness (2: T,F)
– Number of assignments: 2*2*2*3*2=48
– We need to define at least 47 probabilities.

• Time complexity.
– Assume we need to compute the probability of 

Pneumonia=T from the full joint

– Sum over 2*2*3*2=24 combinations

== )( TPneumoniaP
∑ ∑ ∑ ∑
∈ ∈ = ∈

=====
FTi FTj lnhk FTu

uPalekWBCcountjCoughiFeverP
, , ,, ,

),,,(
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Bayesian belief networks (BBNs)

Bayesian belief networks.
• Represent the full joint distribution over the variables more 

compactly with a smaller number of parameters. 
• Take advantage of conditional and marginal independences

among random variables

• A and B are independent

• A and B are conditionally independent given C
)()(),( BPAPBAP =

)|()|()|,( CBPCAPCBAP =
)|(),|( CAPBCAP =
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Alarm system example
• Assume your house has an alarm system against burglary. 

You live in the seismically active area and the alarm system 
can get occasionally set off by an earthquake. You have two 
neighbors, Mary and John, who do not know each other. If 
they hear the alarm they call you, but this is not guaranteed. 

• We want to represent the probability distribution of events:
– Burglary, Earthquake, Alarm, Mary calls and John calls

Burglary

JohnCalls

Alarm

Earthquake

MaryCalls

Causal relations
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Bayesian belief network

Burglary Earthquake

JohnCalls MaryCalls

Alarm

P(B) P(E)

P(A|B,E)

P(J|A) P(M|A)

1. Directed acyclic graph
• Nodes = random variables

Burglary, Earthquake, Alarm, Mary calls and John calls
• Links = direct (causal) dependencies between variables.

The chance of Alarm being is influenced by Earthquake, 
The chance of John calling is affected by the Alarm

CS 2750 Machine Learning

Bayesian belief network

2. Local conditional distributions 
• relate variables and their parents

Burglary Earthquake

JohnCalls MaryCalls

Alarm

P(B) P(E)

P(A|B,E)

P(J|A) P(M|A)
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Bayesian belief network

Burglary Earthquake

JohnCalls MaryCalls

Alarm

B   E T       F

T   T 0.95   0.05
T   F     0.94   0.06
F   T     0.29   0.71
F   F     0.001 0.999

P(B)

0.001 0.999

P(E)

0.002  0.998

A   T      F

T    0.90  0.1
F    0.05  0.95

A      T      F

T    0.7    0.3
F    0.01   0.99

P(A|B,E)

P(J|A) P(M|A)

T        F T         F
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Full joint distribution in BBNs

Full joint distribution is defined in terms of local conditional 
distributions (obtained via the chain rule):

))(|(),..,,(
,..1

21 ∏
=

=
ni

iin XpaXXXX PP

M

A

B

J

E

====== ),,,,( FMTJTATETBP

Example:

)|()|(),|()()( TAFMPTATJPTETBTAPTEPTBP =========

Then its probability is:

Assume the following assignment
of values to random variables

FMTJTATETB ===== ,,,,
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Bayesian belief networks (BBNs)

Bayesian belief networks 
• Represent the full joint distribution over the variables more 

compactly using the product of local conditionals. 
• But how did we get to local parameterizations?
Answer:
• Graphical structure encodes conditional and marginal 

independences among random variables
• A and B are independent
• A and B are conditionally independent given C

• The graph structure implies the decomposition !!!

)()(),( BPAPBAP =

)|()|()|,( CBPCAPCBAP =
)|(),|( CAPBCAP =
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Independences in BBNs
3 basic independence structures:

Burglary

JohnCalls

Alarm

Burglary

Alarm

Earthquake

JohnCalls

Alarm

MaryCalls

1. 2. 3.
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Independences in BBNs

1. JohnCalls is independent of Burglary given Alarm

Burglary

JohnCalls

Alarm

Burglary

Alarm

Earthquake

JohnCalls

Alarm

MaryCalls

1. 2. 3.

)|(),|( AJPBAJP =
)|()|()|,( ABPAJPABJP =
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Independences in BBNs

2.   Burglary is independent of Earthquake (not knowing Alarm) 
Burglary and Earthquake become dependent given Alarm !!

Burglary

JohnCalls

Alarm

JohnCalls

Alarm

MaryCalls

1. 3.

)()(),( EPBPEBP =

Burglary

Alarm

Earthquake

2.
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Independences in BBNs

3.   MaryCalls is independent of JohnCalls given Alarm

Burglary

JohnCalls

Alarm

Burglary

Alarm

Earthquake

1. 2.

JohnCalls

Alarm

3.

MaryCalls

)|(),|( AJPMAJP =

)|()|()|,( AMPAJPAMJP =
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Independence in BBN

• BBN distribution models many conditional independence 
relations relating distant variables and sets

• These are defined in terms of the graphical criterion called d-
separation

• D-separation in the graph
– Let X,Y and Z be three sets of nodes
– If X and Y are d-separated by Z then X and Y are 

conditionally independent given Z
• D-separation :

– A is d-separated from B given C if every undirected path 
between them is blocked

• Path blocking
– 3 cases that expand on three basic independence structures


