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Multi-way classification.
Decision trees. 
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Multi-way classification

• Binary classification
• Multi-way classification

– K classes
– Goal: learn to classify correctly K classes
– Or learn

• Errors:
– Zero-one (misclassification) error for an example:

– Mean misclassification error (for a dataset):
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Multi-way classification
Approaches: 
• Generative model approach

– Generative model of the distribution  p(x,y)
– Learns the parameters of the model through density 

estimation techniques
– Discriminant functions are based on the model

• “Indirect” learning of a classifier 
• Discriminative approach 

– Parametric discriminant functions 
– Learns discriminant functions directly

• A logistic regression model. 
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Generative model approach

Indirect:
1. Represent and learn the distribution
2. Define and use probabilistic discriminant functions

Model
• = Class-conditional distributions (densities)

k class-conditional distributions

• = Priors on classes  
• - probability of class y
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Multi-way classification. Example
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Multi-way classification
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Making class decision

Discriminant functions can be based on: 
• Likelihood of data – choose the class (Gaussian) that explains 

the input data (x) better (likelihood of the data)

• Posterior of a class – choose the class with higher posterior 
probability
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Discriminative approach
• Parametric model of discriminant functions
• Learns the discriminant functions directly

How to learn to classify multiple classes, say 0,1,2?
Approach 1:

– A binary logistic regression on every class versus the rest

0 vs. (1 or 2)

1 vs. (0 or 2)

2 vs. (0 or 1)
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Multi-way classification. Example
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Multi-way classification. Approach 1.
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Multi-way classification. Approach 1.
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Multi-way classification. Approach 1.
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Discriminative approach.
How to learn to classify multiple classes, say 0,1,2 ?

Approach 2:
– A binary logistic regression on all pairs

0 vs. 1

0 vs. 2

1 vs. 2
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Multi-way classification. Example
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Multi-way classification. Approach 2
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Multi-way classification. Approach 2
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Multi-way classification with softmax
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Multi-way classification with softmax
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Learning of the softmax model

• Learning of parameters w: statistical view 

Multi-way
Coin toss











































































∈

1
..
0
0

..

0
..
1
0

0
..
0
1

y

x
)|0(0 x== yPµ

)|1(1 x−==− kyPkµ
ySoftmax

network

Assume outputs y are 
transformed as follows

{ }1..10 −∈ ky



11

CS 2750 Machine Learning

Learning of the softmax model

• Learning of the parameters w: statistical view
• Likelihood of outputs

• We want parameters w that maximize the likelihood
• Log-likelihood trick

– Optimize log-likelihood of outputs instead:

• Objective to optimize
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Learning of the softmax model

• Error to optimize:

• Gradient

• The same very easy gradient update as used for the binary 
logistic regression

• But now we have to update the weights of k networks
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Multi-way classification
• Yet another approach 3

Not 2

2 vs 3

Not 3

Not 2 Not 1 Not 3

1 3

Not 1

3 vs 1

2 vs 1
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Decision trees

• An alternative approach to classification:
– Partition the input space to regions
– Regress or classify independently in every region

1 1
1

0 0

0 0

0
0

01

1 1

0 0
0 0

1

2x

1x



13

CS 2750 Machine Learning

Decision trees
• The partitioning idea is used in the decision tree model:

– Split the space recursively according to inputs in x
– Regress or classify at the bottom of the tree

03 =x
x

t f
01 =x 02 =x

t tf f

Example:
Binary classification 
Binary attributes

1 0 0 1

0

1 0

321 ,, xxx
}1,0{

classify
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Decision trees

How to construct the decision tree?
• Top-bottom algorithm:

– Find the best split condition (quantified 
based on the impurity measure)

– Stops when no improvement possible
• Impurity measure:

– Measures how well are the two classes separated 
– Ideally we would like to separate all 0s and 1

• Splits of finite vs. continuous value attributes
Continuous value attributes conditions: 5.03 ≤x

x

t f
?
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Impurity measure

Let

• Impurity measure defines how well the classes are separated
• In general the impurity measure should satisfy:

– Largest when data are split evenly for attribute values

– Should be 0 when all data belong to the same class
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Impurity measures

• There are various impurity measures used in the literature
– Entropy based measure (Quinlan, C4.5)

– Gini measure (Breiman, CART)
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Impurity measures

• Gain due to split – expected reduction in the impurity 
measure (entropy example)
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Decision tree learning

• Greedy learning algorithm:
Repeat until no or small improvement in the purity
– Find the attribute with the highest gain
– Add the attribute to the tree and split the set accordingly

• Builds the tree in the top-down fashion
– Gradually expands the leaves of the partially built tree

• The method is greedy
– It looks at a single attribute and gain in each step
– May fail when the combination of attributes is needed to  

improve the purity (parity functions)
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Decision tree learning

• Limitations of greedy methods
Cases in which a combination of two or more attributes 

improves the impurity
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Decision tree learning
By reducing the impurity measure we can grow very large trees
Problem: Overfitting
• We may split and classify very well the training set, but we may

do worse in terms of  the generalization error 
Solutions to the overfitting problem:
• Solution 1.

– Prune branches of the tree built in the first phase
– Use validation set to test for the overfit

• Solution 2. 
– Test for the overfit in the tree building phase
– Stop building the tree when performance on the validation set 

deteriorates 
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K-Nearest-Neighbours for Classification

• Given a data set with Nk data points from class Ck
and                            ,  we have

• and correspondingly

• Since                          ,     Bayes’ theorem gives

CS 2750 Machine Learning

K-Nearest-Neighbours for Classification

K = 1K = 3
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Nonparametric kernel-based classification

• Kernel function:  k(x,x’)
– Models similarity between x, x’
– Example: Gaussian kernel we used in kernel density 

estimation

• Kernel for classification
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