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Multi-way classification

* Binary classification Y ={0,1}
* Multi-way classification
— Keclasses Y ={0,1,...,K -1}
— Goal: learn to classify correctly K classes
— Orlearn f:X —{0,1,....K -1}
* Errors:
— Zero-one (misclassification) error for an example:

b csun1=[) 7

— Mean misclassification error (for a dataset):

LZ Error (x,,y,)
n -
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Multi-way classification

Approaches:
* Generative model approach
— Generative model of the distribution p(x,y)

— Learns the parameters of the model through density
estimation techniques

— Discriminant functions are based on the model
* “Indirect” learning of a classifier
* Discriminative approach
— Parametric discriminant functions
— Learns discriminant functions directly

* A logistic regression model.
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Generative model approach

Indirect:

1. Represent and learn the distribution p(X, )

2. Define and use probabilistic discriminant functions

g;(x) =log p(y =i[x)

Model p(x,y) = p(x|y)p(»)
* p(x|y) = Class-conditional distributions (densities)

k class-conditional distributions

p(x|y =i Vi 0<i<K-1

 p(y) =Priors on classes
* - probability of class y

Zp(y=i)=1
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Multi-way classification. Example
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Multi-way classification
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Making class decision

Discriminant functions can be based on:
* Likelihood of data — choose the class (Gaussian) that explains
the input data (x) better (likelihood of the data)

Choice: i =arg max p(x|0,)

i=0,...k—1
p(x|0,)~ p(x|u,X,) For Gaussians

* Posterior of a class — choose the class with higher posterior
probability

Choice: ;= arg max p(y =i]x,0,)

i=0,...k-1

p(y=ilx)=—LXI€)Pr=0)
2 P(x1©)p(y=))
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Discriminative approach

* Parametric model of discriminant functions

* Learns the discriminant functions directly

How to learn to classify multiple classes, say 0,1,2?
Approach 1:

— A binary logistic regression on every class versus the rest

1 O 0vs. (1or2)
1 1 vs. (0 or2)
X, 2vs.(0orl)
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Multi-way classification. Example
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Multi-way classification. Approach 1.
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Multi-way classification. Approach 1.

1

2vs {0,1} 1 vs {0,2}
ot
Ambiguous Region of
region ~—~ nobody
osf 0vs {1,2}

8O,
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Multi-way classification. Approach 1.
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Discriminative approach.

How to learn to classify multiple classes, say 0,1,2 ?

Approach 2:

— A binary logistic regression on all pairs

1 ) Owvs. 1
)

X Ovs.2

X, 1vs.2
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Multi-way classification. Example
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Multi-way classification. Approach 2
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Multi-way classification. Approach 2
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Multi-way classification. Approach 2

3
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Multi-way classification with softmax

* A solution to the problem of having an ambiguous region

T
, exp(w, X _
py=ix)=u = X T) 2 =1
Zexp(wj X) i
i
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Multi-way classification with softmax
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Learning of the softmax model

» Learning of parameters w: statistical view

Mo =P(y=0]x)

Softmax oo o Multi-way
network | p4_, =P(y=k—1|X) | Coin toss

Assume outputs y are

transformed as follows 1 0
0 1

ye{0 1 .. k-1} e==p ye
0 0
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Learning of the softmax model

Learning of the parameters w: statistical view

Likelihood of outputs
L(D,w)=p(Y|X,w)= Hp(y[ | X, W)

i=l,.n

We want parameters w that maximize the likelihood
Log-likelihood trick
— Optimize log-likelihood of outputs instead:

I(D,w)=log Hp(yi | X,W) = Zlogp(y,- | X,W)

i=l,.n i=l,.n
k-1 k-1
— Yig —
- Z Zlogﬂi t= Z zyi,q log'ui,q
i=l,..n g=0 i=l,..n g=0

Objective to optimize n k-l
] p J(D,,w) = _z Z i, log u,,

i=l g=
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Learning of the softmax model

Error to optimize:
n k

J(D;,w)=->"

-1
i=1  ¢q=0

yi,q log /’li,q

Gradient 5 )
WJ(DI':W) = Z _xi,j(yi,q - :ui,q)

Jq i=1

The same very easy gradient update as used for the binary
logistic regression
Wq <~ Wq + az (yi,q - ll’li,q)xi
i=1

But now we have to update the weights of k networks
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Multi-way classification

* Yet another approach 3

Not 3

Not 2 Not 1
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Decision trees

* An alternative approach to classification:
— Partition the input space to regions
— Regress or classify independently in every region

Xy
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Decision trees

* The partitioning idea is used in the decision tree model:
— Split the space recursively according to inputs in x
— Regress or classify at the bottom of the tree

Example:
Binary classification {0,1} X
Binary attributes x,, x,, x; é x;=0
‘V w
= O =0

oy

- .(% " .4@
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Decision trees

How to construct the decision tree?

* Top-bottom algorithm: X
— Find the best split condition (quantified ?
based on the impurity measure) ! N‘
— Stops when no improvement possible O O

* Impurity measure:
— Measures how well are the two classes separated
— Ideally we would like to separate all Os and 1

» Splits of finite vs. continuous value attributes

Continuous value attributes conditions: x;<0.5
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Impurity measure

Let |D | - Total number of data entries
| D,| - Number of data entries classified as i
_ | D] L . ,
P = lT - ratio of instances classified as i

* Impurity measure defines how well the classes are separated
* In general the impurity measure should satisfy:
— Largest when data are split evenly for attribute values
3 1
 number of classes

i

— Should be 0 when all data belong to the same class
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Impurity measures

» There are various impurity measures used in the literature

— Entropy based measure (Ql}}inlan, C4.5)
(D) = Entropy (D)=~ p,log p,

i=1

Example for k=2

— Gini measure (Breiman, CART)

I(D) = Gini (D) =1- ﬁ p.’

i=1
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Impurity measures

* Gain due to split — expected reduction in the impurity
measure (entropy example)

Gain (D, A) = Entropy (D) — z | D |Entr0py (D)
veValues (A)

| D" | -anpartition of D with the value of attribute A = v
X x
é x =0 x;=0
/ Entmpy(D) P ﬁ
Entropy(D) \

Entropy(D ) Entropy(Df )
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Decision tree learning

* Greedy learning algorithm:
Repeat until no or small improvement in the purity
— Find the attribute with the highest gain
— Add the attribute to the tree and split the set accordingly

* Builds the tree in the top-down fashion

— Gradually expands the leaves of the partially built tree
* The method is greedy

— It looks at a single attribute and gain in each step

— May fail when the combination of attributes is needed to
improve the purity (parity functions)
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Decision tree learning

* Limitations of greedy methods

Cases in which a combination of two or more attributes
improves the impurity

1 0 0
! 0
1 0
o O 11
1
00
1
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Decision tree learning

By reducing the impurity measure we can grow very large trees
Problem: Overfitting

*  We may split and classify very well the training set, but we may
do worse in terms of the generalization error

Solutions to the overfitting problem:

* Solution 1.
— Prune branches of the tree built in the first phase
— Use validation set to test for the overfit

* Solution 2.
— Test for the overfit in the tree building phase

— Stop building the tree when performance on the validation set
deteriorates

CS 2750 Machine Learning




K-Nearest-Neighbours for Classification

Given a data set with N, data points from class Cy
and >, N, =N , wehave

P £
px) = —
Y NY
 and correspondingly -
s A
o{x|Cp ) = — ij_
- ! NV

« Since p{Cy) = Ni/N

:"{L
I N _ Ry
PV — = -
Fa9
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K-Nearest-Neighbours for Classification
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Nonparametric kernel-based classification

* Kernel function: k(x,x’)
— Models similarity between x, x’
— Example: Gaussian kernel we used in kernel density

estimation
) = — b exp| - XD
(27[h2)D/2 2h2

1 N
x)=—) k(x,x,
p(x) NZ:, (x,x;)
¢ Kernel for classification

D k(x,x")

x"y'=Cy

P(y=Ck\x)=W
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