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SVMs for regression
Multilayer neural networks

CS 2750 Machine Learning

Support vector machine (SVM)

• SVM maximize the margin around the separating hyperplane.
• The decision function is fully specified by a subset of the 

training data, the support vectors.
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Support vector machines

• The decision boundary:

• The decision:

• (!!):
• Decision on a new x requires to compute  the inner product 

between the examples
• Similarly, the optimization depends on 
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Nonlinear case

• The linear case requires to compute
• The non-linear case can be handled by using a set of features. 

Essentially we map input vectors to (larger) feature vectors

• It is possible to use SVM formalism on feature vectors

• Kernel function

• Crucial idea: If we choose the kernel function wisely we can 
compute linear separation in the feature space implicitly such 
that we keep working in the original input space !!!!
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Kernel function example

• Assume                         and a feature mapping that maps the input 
into a quadratic feature set

• Kernel function for the feature space:

• The computation of the linear separation in the higher dimensional 
space is performed implicitly in the original input space
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Kernel trick

• Replace the inner product with a kernel

• A well chosen kernel leads to an efficient computation

Nonlinear extension
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Kernel functions

• Linear kernel

• Polynomial kernel

• Radial basis kernel
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Kernels

• Kernels define a similarity measure : 
– define a distance in between two objects 

• Design criteria: we want kernels to  be
– valid – Satisfy Mercer condition of positive semi-

definiteness
– good – embody the “true similarity” between objects
– appropriate – generalize well
– efficient – the computation of K(x,x’) is feasible

• NP-hard problems abound with graphs
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Kernels

• Research have proposed kernels for comparison of variety of 
objects:
– Strings
– Trees
– Graphs

• Cool thing:
– SVM algorithm can be now applied to classify a variety of 

objects 

CS 2750 Machine Learning

Regression = find a function that fits the data.
• A data point may be wrong due to the noise
Idea: Error from points which are close should count as a valid 

noise
• Line should be influenced by the real data not the noise.

Support vector machine for regression
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Linear model
• Training data:

• Our goal is to find a function f(x) that has at most ε deviation 
from the actually obtained target  for all the training data. 
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bbf +〉〈=+= xw,xwx T)(

Linear model
Linear function:

We want a function that is:
• flat: means that one seeks small w
• all data points are within its ε neighborhood 
The problem can be formulated as a convex optimization 

problem:

All data points are assumed to be in the ε neighborhood 
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bbf +〉〈=+= xw,xwx T)(

Linear model
• Real data: not all data points always fall into the ε

neighborhood 

• Idea: penalize points that fall outside the ε neighborhood 
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bbf +〉〈=+= xw,xwx T)(

Linear model
Linear function:

Idea: penalize points that fall outside the ε neighborhood
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εε--intensive loss functionintensive loss function
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Lagrangian that solves the optimization problem

Optimization
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are non-zero only for points outside the ε band.
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Multilayer neural networks

Or another way of modeling nonlinearities
for regression and classification problems
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Linear units

Logistic regressionLinear regression

∑

1

)|1( xyp =

0w

1w
2w

dw

z
∑

1

1x
0w

1w
2w

dw

dx

2x

)(xf

∑
=

+=
d

j
jj xwwf

1
0)(x )(),|1()(

1
0 ∑

=

+===
d

j
jj xwwgypf wxx

jjj xfyww ))(( x−+← α jjj xfyww ))(( x−+← α

))((00 xfyww −+← α
On-line gradient update:

))((00 xfyww −+← α
On-line gradient update:

The same

=)(xf

1x

dx

2x

CS 2750 Machine Learning

Limitations of basic linear units

Logistic regressionLinear regression
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Regression with the quadratic model.

Limitation: linear hyper-plane only
• a non-linear surface can be better 

CS 2750 Machine Learning

Classification with the linear model.   

Logistic regression model defines a linear decision boundary
• Example: 2 classes (blue and red points)

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
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0.5

1

1.5

2
Decision boundary
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Linear decision boundary
• logistic regression model is not optimal, but not that bad

-4 -3 -2 -1 0 1 2 3 4 5 6
-4

-3
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3
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When logistic regression fails?

• Example in which the logistic regression model fails
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Limitations of linear units. 

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
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• Logistic regression does not work for parity functions
- no linear decision boundary exists

Solution: a model of a non-linear decision boundary
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Extensions of simple linear units
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Learning with extended linear units
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Important property:
• The same problem as learning of the weights for linear units , the 
input has changed– but the weights are linear in the new input
Problem: too many weights to learn
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Multi-layered neural networks

• An alternative way to introduce nonlinearities to 
regression/classification models

• Key idea: Cascade several simple neural models with 
logistic units. Much like neuron connections.
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Multilayer neural network

Hidden layer Output layerInput layer

Cascades multiple logistic regression units
Also called a multilayer perceptron (MLP)
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Multilayer neural network

• Models non-linearity through logistic regression units
• Can be applied to both regression and binary classification

problems 
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Multilayer neural network

• Non-linearities are modeled using multiple hidden logistic 
regression units (organized in layers)

• The output layer determines whether it is a regression or a 
binary classification problem
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Hidden layers Output layerInput layer

),()( wxx ff =

regression

classification

option

1x

dx
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Learning with MLP

• How to learn the parameters of the neural network?
• Gradient descent algorithm

– Weight updates based on the error:

• We need to compute gradients for weights in all units
• Can be computed in one backward sweep through the net !!!

• The process is called back-propagation
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Backpropagation

∑
)1( +kxl)(kxi

)(, kw ji )(kzi )1( +kzl)1(, +kw il

∑
)1( −kx j

k-th level (k+1)-th level(k-1)-th level

)(kxi - output of the unit i on level k
)(kzi - input to the sigmoid function on level k 

∑ −+=
j

jjiii kxkwkwkz )1()()()( ,0,

))(()( kzgkx ii =

)(, kw ji - weight between units j and i on levels (k-1) and k

CS 2750 Machine Learning



20

CS 2750 Machine Learning

Backpropagation
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Learning with MLP

• Gradient descent algorithm
– Weight update:
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α - a learning rate
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Learning with MLP

• Online gradient descent algorithm
– Weight update:

),(
)(

)()( online
,

,, wu
ji

jiji DJ
kw

kwkw
∂

∂
−← α

)1()(
)(

)(
)(

),(
),(

)( ,,

−=
∂
∂

∂
∂

=
∂

∂ kxk
kw

kz
kz
DJ

DJ
kw ji

ji

i

i

uonline
uonline

ji

δ
w

w

)1()()()( ,, −−← kxkkwkw jijiji αδ

)1( −kx j

)(kiδ
- j-th output of the (k-1) layer

- derivative computed via backpropagation
α - a learning rate

CS 2750 Machine Learning

Online gradient descent algorithm for MLP

Online-gradient-descent (D, number of iterations)
Initialize all weights
for i=1:1: number of iterations

do      select a data point Du=<x,y> from D
set  learning rate 
compute outputs                for each unit
compute derivatives           via backpropagation
update all weights (in parallel)

end for
return weights w
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Xor Example. 

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
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• linear decision boundary does not exist

CS 2750 Machine Learning

Xor example. Linear unit
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Xor example.  
Neural network with  2 hidden units

CS 2750 Machine Learning

Xor example. 
Neural network with 10 hidden units
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MLP in practice

• Optical character recognition – digits 20x20
– Automatic sorting of mails
– 5 layer network with multiple output functions

10 outputs (0,1,…9)
…

20x20 = 400  inputs

5          10                   3000

4        300                   1200

3       1200                50000

2         784                  3136

1        3136               78400

layer      Neurons        Weights


