Density estimation

Design cycle

Data cleaning and preprocessing

Data → Feature selection → Model selection → Learning → Evaluation
Design cycle

Data → Feature selection → Model selection → Learning → Evaluation

- **Feature selection**
 - Reduce the dimensionality of data, especially if the sample size is small

- **Model selection**
 - Select a class of models among which to search for the model (by human, semi-automatic)
Design cycle

Data

Feature selection

Model selection

Learning

Evaluation

Find the best model according to some optimization criterion
• efficiency matters

Assess the quality of the model
Evaluation of learning models

Simple holdout method
- Divide the data to the training and test data

- Typically 2/3 training and 1/3 testing

Other more complex methods
- Use multiple train/test sets
- Based on various random re-sampling schemes:
 - Random sub-sampling
 - Cross-validation
 - Bootstrap
Evaluation

- **Random sub-sampling**
 - Repeat a simple holdout method k times

 ![Diagram](image)

 - Split randomly into 70% Train, 30% Test
 - Train
 - Test
 - Learning
 - Classify/Evaluate
 - Average Stats

Cross-validation (k-fold)

- Divide data into k disjoint groups, test on k-th group/train on the rest
- Typically 10-fold cross-validation
- Leave one out cross-validation ($k = \text{size of the data } D$)

![Diagram](image)

- Split into k groups of equal size
- Test = ith group, Train on the rest
- Train
- Test
- Learning
- Classify/Evaluate
- Average Stats
Evaluation

Bootstrap
- The training set of size $N = \text{size of the data } D$
- Sampling with the replacement

Data

Generate the training set of size N with replacement, the rest goes to the test set

Train

Test

Learning

Classify/Evaluate

Average Stats

Design cycle

Feeding back the evaluation results may help to choose a better model
- but then be aware that you are picking a winner

Evaluation statistics for the winner model may not reflect its true performance

Fix: Add one more evaluation step
What if we want to compare the predictive performance on a classification or a regression problem for two different learning methods?

Solution: compare the error results on the test data set or the average statistics on the same training/testing data splits

Answer: the method with better (smaller) testing error gives a better generalization error.

But we need to use statistics to validate the choice.

Outline

- **Density estimation:**
 - Maximum likelihood (ML)
 - Bayesian parameter estimates
 - MAP
- Bernoulli distribution
- Binomial distribution
- Multinomial distribution
- Normal distribution
Density estimation

Data:
\[D = \{D_1, D_2, \ldots, D_n\} \]
\[D_i = x_i \quad \text{a vector of attribute values} \]

Attributes:
- modeled by random variables \(X = \{X_1, X_2, \ldots, X_d\} \) with:
 - Continuous values
 - Discrete values

E.g. blood pressure with numerical values
or chest pain with discrete values
[no-pain, mild, moderate, strong]

Underlying true probability distribution:
\[p(X) \]

Objective:
try to estimate the underlying ‘true’ probability distribution over variables \(X \), \(p(X) \), using examples in \(D \)

Standard (iid) assumptions: Samples
- are independent of each other
- come from the same (identical) distribution (fixed \(p(X) \))
Density estimation

Types of density estimation:

Parametric
- the distribution is modeled using a set of parameters Θ

 $p(X \mid \Theta)$
- **Example**: mean and covariances of a multivariate normal
- **Estimation**: find parameters Θ describing data D

Non-parametric
- The model of the distribution utilizes all examples in D
- As if all examples were parameters of the distribution
- **Examples**: Nearest-neighbor

Semi-parametric

Learning via parameter estimation

In this lecture we consider **parametric density estimation**

Basic settings:
- A set of random variables $X = \{X_1, X_2, \ldots, X_d\}$
- A **model of the distribution** over variables in X

 with parameters Θ : $\hat{p}(X \mid \Theta)$

- **Data** $D = \{D_1, D_2, \ldots, D_n\}$

Objective: find parameters Θ such that $p(X \mid \Theta)$ describes data D the best
Parameter estimation.

- **Maximum likelihood (ML)**

 maximize \(p(D \mid \Theta, \xi) \)

 - yields: one set of parameters \(\Theta_{ML} \)

 - the target distribution is approximated as:

 \[\hat{p}(X) = p(X \mid \Theta_{ML}) \]

- **Bayesian parameter estimation**

 - uses the posterior distribution over possible parameters

 \[p(\Theta \mid D, \xi) = \frac{p(D \mid \Theta, \xi) p(\Theta \mid \xi)}{p(D \mid \xi)} \]

 - Yields: all possible settings of \(\Theta \) (and their “weights”)

 - The target distribution is approximated as:

 \[\hat{p}(X) = p(X \mid D) = \int p(X \mid \Theta) p(\Theta \mid D, \xi) d\Theta \]

Parameter estimation.

Other possible criteria:

- **Maximum a posteriori probability (MAP)**

 maximize \(p(\Theta \mid D, \xi) \) (mode of the posterior)

 - Yields: one set of parameters \(\Theta_{MAP} \)

 - Approximation:

 \[\hat{p}(X) = p(X \mid \Theta_{MAP}) \]

- **Expected value of the parameter**

 \[\hat{\Theta} = E(\Theta) \] (mean of the posterior)

 - Expectation taken with regard to posterior \(p(\Theta \mid D, \xi) \)

 - Yields: one set of parameters

 - Approximation:

 \[\hat{p}(X) = p(X \mid \hat{\Theta}) \]
Parameter estimation. Coin example.

Coin example: we have a coin that can be biased

Outcomes: two possible values -- head or tail

Data: D a sequence of outcomes x_i such that

- **head** \(x_i = 1 \)
- **tail** \(x_i = 0 \)

Model: probability of a head θ

probability of a tail $(1 - \theta)$

Objective:

We would like to estimate the probability of a head $\hat{\theta}$ from data

Parameter estimation. Example.

- **Assume** the unknown and possibly biased coin
- **Probability of the head** is θ
- **Data:**

 \[
 \begin{array}{cccccccccccc}
 H & H & T & T & H & H & T & T & T & H & T & H & H & H & H & H & H & H & T \\
 \end{array}
 \]

 – **Heads:** 15
 – **Tails:** 10

What would be your estimate of the probability of a head $\hat{\theta}$?

$\hat{\theta} = ?$
Parameter estimation. Example

• **Assume** the unknown and possibly biased coin
• Probability of the head is θ
• **Data:**

 H H T T H H T H T T H T H T H T H H T H H H T T
 – **Heads:** 15
 – **Tails:** 10

What would be your choice of the probability of a head?

Solution: use frequencies of occurrences to do the estimate

$$\hat{\theta} = \frac{15}{25} = 0.6$$

This is the **maximum likelihood estimate** of the parameter θ

Probability of an outcome

Data: D a sequence of outcomes x_i such that

• **head** $x_i = 1$
• **tail** $x_i = 0$

Model: probability of a head θ

 probability of a tail $(1 - \theta)$

Assume: we know the probability θ

Probability of an outcome of a coin flip x_i

$$P(x_i \mid \theta) = \theta^{x_i} (1 - \theta)^{1-x_i}$$

Bernoulli distribution

– Combines the probability of a head and a tail
– So that x_i is going to pick its correct probability
– Gives θ for $x_i = 1$
– Gives $(1 - \theta)$ for $x_i = 0$
Probability of a sequence of outcomes.

Data: D a sequence of outcomes x_i such that
- head $x_i = 1$
- tail $x_i = 0$

Model: probability of a head θ
probability of a tail $(1 - \theta)$

Assume: a sequence of independent coin flips
$D = H \ H \ T \ H \ T \ H$
(encoded as $D= 110101$)

What is the probability of observing the data sequence D:

$$ P(D \mid \theta) = ? $$
Probability of a sequence of outcomes.

Data: D a sequence of outcomes x_i such that

- **head** $x_i = 1$
- **tail** $x_i = 0$

Model:
- probability of a head θ
- probability of a tail $1 - \theta$

Assume: a sequence of coin flips $D = H H T H T H$

encoded as $D = 110101$

What is the probability of observing a data sequence D:

$$P(D \mid \theta) = \theta \theta (1 - \theta) \theta (1 - \theta) \theta$$

likelihood of the data

Can be rewritten using the Bernoulli distribution:

$$P(D \mid \theta) = \prod_{i=1}^{6} \theta^{x_i} (1 - \theta)^{(1-x_i)}$$
The goodness of fit to the data.

Learning: we do not know the value of the parameter θ

Our learning goal:
- Find the parameter θ that fits the data D the best?

One solution to the “best”: Maximize the likelihood

$$P(D \mid \theta) = \prod_{i=1}^{n} \theta^{x_i} (1 - \theta)^{(1-x_i)}$$

Intuition:
- more likely are the data given the model, the better is the fit

Note: Instead of an error function that measures how bad the data fit the model we have a measure that tells us how well the data fit:

$$\text{Error } (D, \theta) = -P(D \mid \theta)$$

Example: Bernoulli distribution.

Coin example: we have a coin that can be biased

Outcomes: two possible values -- head or tail

Data: D a sequence of outcomes x_i such that
- head $x_i = 1$
- tail $x_i = 0$

Model: probability of a head θ
probability of a tail $(1 - \theta)$

Objective:
We would like to estimate the probability of a head $\hat{\theta}$

Probability of an outcome x_i

$$P(x_i \mid \theta) = \theta^{x_i} (1 - \theta)^{(1-x_i)} \quad \text{Bernoulli distribution}$$
Maximum likelihood (ML) estimate.

Likelihood of data:
\[P(D \mid \theta, \xi) = \prod_{i=1}^{n} \theta^{x_i} (1 - \theta)^{(1-x_i)} \]

Maximum likelihood estimate
\[\theta_{ML} = \arg \max_{\theta} P(D \mid \theta, \xi) \]

Optimize log-likelihood (the same as maximizing likelihood)
\[
\begin{align*}
\ell(D, \theta) &= \log P(D \mid \theta, \xi) = \log \prod_{i=1}^{n} \theta^{x_i} (1 - \theta)^{(1-x_i)} \\
&= \sum_{i=1}^{n} x_i \log \theta + (1-x_i) \log(1-\theta) = \log \theta \sum_{i=1}^{n} x_i + \log(1-\theta) \sum_{i=1}^{n} (1-x_i)
\end{align*}
\]

\[N_1 \text{ - number of heads seen} \quad N_2 \text{ - number of tails seen} \]

CS 2750 Machine Learning

Maximum likelihood (ML) estimate.

Optimize log-likelihood
\[\ell(D, \theta) = N_1 \log \theta + N_2 \log(1-\theta) \]

Set derivative to zero
\[\frac{\partial \ell(D, \theta)}{\partial \theta} = \frac{N_1}{\theta} - \frac{N_2}{1-\theta} = 0 \]

Solving
\[\theta = \frac{N_1}{N_1 + N_2} \]

ML Solution:
\[\theta_{ML} = \frac{N_1}{N} = \frac{N_1}{N_1 + N_2} \]

CS 2750 Machine Learning
Maximum likelihood estimate. Example

• Assume the unknown and possibly biased coin
• Probability of the head is θ
• Data:
 \[H \ H \ T \ T \ H \ H \ T \ H \ T \ T \ H \ T \ H \ H \ H \ H \ T \ H \ H \ H \ H \ T \]
 – Heads: 15
 – Tails: 10

What is the ML estimate of the probability of a head and a tail?

\[
\theta_{\text{ML}} = \frac{N_1}{N} = \frac{N_1}{N_1 + N_2} = \frac{15}{25} = 0.6
\]

\[
(1 - \theta_{\text{ML}}) = \frac{N_2}{N} = \frac{N_2}{N_1 + N_2} = \frac{10}{25} = 0.4
\]
Maximum a posteriori estimate

- Selects the mode of the posterior distribution

\[\theta_{MAP} = \arg \max_{\theta} p(\theta \mid D, \xi) \]

Likelihood of data

\[p(\theta \mid D, \xi) = \frac{P(D \mid \theta, \xi) p(\theta \mid \xi)}{P(D \mid \xi)} \]
(via Bayes rule)

Normalizing factor

\[P(D \mid \theta, \xi) = \prod_{i=1}^{n} \theta^{x_i} (1 - \theta)^{1-x_i} = \theta^{N_1} (1 - \theta)^{N_2} \]

\[p(\theta \mid \xi) \] - is the prior probability on \(\theta \)

How to choose the prior probability?

Prior distribution

Choice of prior: Beta distribution

\[p(\theta \mid \xi) = \text{Beta}(\theta \mid \alpha_1, \alpha_2) = \frac{\Gamma(\alpha_1 + \alpha_2)}{\Gamma(\alpha_1) \Gamma(\alpha_2)} \theta^{\alpha_1 - 1} (1 - \theta)^{\alpha_2 - 1} \]

\(\Gamma(x) \) - a Gamma function
\(\Gamma(x) = (x - 1)\Gamma(x - 1) \)

For integer values of \(x \)
\(\Gamma(n) = (n - 1)! \)

Why to use Beta distribution?

Beta distribution “fits” Bernoulli trials - conjugate choices

\[P(D \mid \theta, \xi) = \theta^{N_1} (1 - \theta)^{N_2} \]

Posterior distribution is again a Beta distribution

\[p(\theta \mid D, \xi) = \frac{P(D \mid \theta, \xi) p(\theta \mid \alpha_1, \alpha_2)}{P(D \mid \xi)} = \text{Beta}(\theta \mid \alpha_1 + N_1, \alpha_2 + N_2) \]
Beta distribution

\[
p(\theta | \xi) = \text{Beta}(\theta | a, b) = \frac{\Gamma(a + b)}{\Gamma(a)\Gamma(b)} \theta^{a-1}(1 - \theta)^{b-1}
\]

Posterior distribution

\[
p(\theta | D, \xi) = \frac{P(D | \theta, \xi) \text{Beta}(\theta | \alpha_1, \alpha_2)}{P(D | \xi)} = \text{Beta}(\theta | \alpha_1 + N_1, \alpha_2 + N_2)
\]
Maximum a posterior probability

Maximum a posteriori estimate
- Selects the mode of the posterior distribution

\[p(\theta \mid D, \xi) = \frac{P(D \mid \theta, \xi)\text{Beta}(\theta \mid \alpha_1, \alpha_2)}{P(D \mid \xi)} = \text{Beta}(\theta \mid \alpha_1 + N_1, \alpha_2 + N_2) \]

\[= \frac{\Gamma(\alpha_1 + \alpha_2 + N_1 + N_2)}{\Gamma(\alpha_1 + N_1)\Gamma(\alpha_2 + N_2)} \theta^{N_1 + \alpha_1 - 1}(1 - \theta)^{N_2 + \alpha_2 - 1} \]

Notice that parameters of the prior act like counts of heads and tails (sometimes they are also referred to as prior counts)

MAP Solution:

\[\theta_{MAP} = \frac{\alpha_1 + N_1 - 1}{\alpha_1 + \alpha_2 + N_1 + N_2 - 2} \]

MAP estimate example

- Assume the unknown and possibly biased coin
- Probability of the head is \(\theta \)
- **Data:**

 H H T T H H T H T T H H T H H H T H H H H T H H H H T

 - **Heads:** 15
 - **Tails:** 10

- Assume \(p(\theta \mid \xi) = \text{Beta}(\theta \mid 5, 5) \)

What is the MAP estimate?
MAP estimate example

• Assume the unknown and possibly biased coin
• Probability of the head is θ
• Data:
 H H T T H H T H T T T H H T H H H H H T H H H H T
 – Heads: 15
 – Tails: 10
• Assume $p(\theta \mid \xi) = Beta(\theta \mid 5,5)$

What is the MAP estimate?

$$\theta_{MAP} = \frac{N_1 + \alpha_1 - 1}{N - 2} = \frac{N_1 + \alpha_1 - 1}{N_1 + N_2 + \alpha_1 + \alpha_2 - 2} = \frac{19}{33}$$

Note that the prior and data fit (data likelihood) are combined
The MAP can be biased with large prior counts
It is hard to overturn it with a smaller sample size
• Data:
 H H T T H H T H T T T H H T H H H H H T H H H H T
 – Heads: 15
 – Tails: 10
• Assume $p(\theta \mid \xi) = Beta(\theta \mid 5,5)$

$$\theta_{MAP} = \frac{19}{33}$$

$p(\theta \mid \xi) = Beta(\theta \mid 5,20)$

$$\theta_{MAP} = \frac{19}{48}$$