
1

CS 2750 Machine Learning

CS 2750 Machine Learning
Lecture 23

Milos Hauskrecht
milos@cs.pitt.edu
5329 Sennott Square

Boosting

CS 2750 Machine Learning

Schedule

Exam:
• Wednesday, April 21, 2010

Term projects due:
Thursday, April 29, 2010 at 11:59pm EST

Project presentations:
• Monday, April 26, 2010 and Wednesday, April 28, 2010
• In class

2

CS 2750 Machine Learning

Ensemble methods

• Mixture of experts
– Multiple ‘base’ models (classifiers, regressors), each covers

a different part (region) of the input space
• Committee machines:

– Multiple ‘base’ models (classifiers, regressors), each covers
the complete input space

– Each base model is trained on a slightly different train set
– Combine predictions of all models to produce the output

• Goal: Improve the accuracy of the ‘base’ model
– Methods:

• Bagging
• Boosting
• Stacking (not covered)

CS 2750 Machine Learning

Bagging (Bootstrap Aggregating)
• Given:

– Training set of N examples
– A base model (e.g. a decision tree, neural network, …)

• Method:
– Train multiple (k) base models on different samples (data

splits)
– Predict (test) by averaging the results of k base models

• Goal:
– Improve the accuracy of one model by using its multiple

copies
– Average of misclassification errors on different data splits

gives a better estimate of the predictive ability of a learning
method

3

CS 2750 Machine Learning

Bagging algorithm

• Training
– In each iteration t, t=1,…T

• Randomly sample with replacement N samples from
the training set

• Train a “base model” on the samples
• Test

– For each test example
• Predict on all trained base models
• Predict by combining results of all T trained models:

– Regression: averaging
– Classification: a majority vote

CS 2750 Machine Learning

Simple Majority Voting

Final

Class “yes”

H1

H3

Test examples

Class “no”

H2

4

CS 2750 Machine Learning

When Bagging works?
Under-fitting and over-fitting

• Under-fitting:
– High bias (models are not

accurate)
– Small variance (smaller

influence of examples in the
training set)

• Over-fitting:
– Small bias (models flexible

enough to fit well to training
data)

– Large variance (models
depend very much on the
training set)

CS 2750 Machine Learning

When Bagging works

• Main property of Bagging (proof omitted)
– Bagging decreases variance of the base model without

changing the bias!!!
– Why? averaging!

• Bagging typically helps
– When applied with an over-fitted base model

• High dependency on actual training data
• It does not help much

– High bias. When the base model is robust to the
changes in the training data (due to sampling)

5

CS 2750 Machine Learning

Boosting

• Bagging
– Multiple base models on the complete space, a learner is

not biased to any region
– Learners are learned independently

• Boosting
– Every learner covers the complete space
– Learners are biased to regions not predicted well by other

learners
– Learners are dependent

CS 2750 Machine Learning

Boosting. Theoretical foundations.

• PAC: Probably Approximately Correct framework
– (ε-δ) solution

• PAC learning:
– Learning with the pre-specified accuracy ε and

confidence δ
– the probability that the misclassification error is larger

than ε is smaller than δ

• Error (ε) Accuracy (1-ε): Percent of correctly classified
samples in test

• Confidence parameter (δ) (1-δ): The probability that in
one experiment some accuracy will be achieved

δε ≤>))((cMEP

6

CS 2750 Machine Learning

PAC Learnability
Strong (PAC) learnability:
• There exists a learning algorithm that efficiently learns a

classifier with any pre-specified accuracy and confidence
Strong (PAC) learner:
• A learning algorithm P that given an arbitrary

– classification error ε (ε <1/2), and
– confidence parameter δ (δ < 1/2)

• Outputs a classifier c:
– Satisfying:
– And runs in time polynomial in 1/ δ, 1/ε

• Implies: number of samples N is polynomial in 1/ δ, 1/ε

δε ≤>))((cMEP

CS 2750 Machine Learning

Weak Learner

Weak learner:
• A learning algorithm W that learns the classification with

some accuracy and confidence satisfying:
– classification accuracy > 1-εo >1/2
– with confidence probability >1- δo > ½
on any data distribution D

• Caveat: Learns a classifier with εo <1/2 and δo <1/2 on
arbitrary distribution of data entries

7

CS 2750 Machine Learning

Weak learnability=Strong (PAC) learnability

• Assume there exists a weak learner
– it is better that a random guess (50 %) with confidence

higher than 50 % on any data distribution
• Question:

– Is problem also PAC-learnable?
– Can we generate an algorithm P that achieves an arbitrary

(ε-δ) accuracy?
• Why is important?

– Usual classification methods (decision trees, neural nets),
have specified, but uncontrollable performances.

– Can we improve performance to achieve pre-specified
accuracy (confidence)?

CS 2750 Machine Learning

Weak=Strong learnability!!!

• Proof due to R. Schapire
An arbitrary (ε-δ) improvement is possible

Idea: combine multiple weak learners together
– Weak learner W with confidence δo and maximal error εo

– It is possible:
• To improve (boost) the confidence
• To improve (boost) the accuracy

by training different weak learners on slightly different
datasets

8

CS 2750 Machine Learning

Boosting accuracy
Training

Distribution samples

H1 and H2 classify differently

Correct classification
Wrong classification

H3

H1

H2

Learners

CS 2750 Machine Learning

Boosting accuracy

• Training
– Sample randomly from the distribution of examples
– Train hypothesis H1.on the sample
– Evaluate accuracy of H1 on the distribution
– Sample randomly such that for the half of samples H1.

provides correct, and for another half, incorrect results;
Train hypothesis H2.

– Train H3 on samples from the distribution where H1 and
H2 classify differently

• Test
– For each example, decide according to the majority vote

of H1, H2 and H3

9

CS 2750 Machine Learning

Theorem
• If each hypothesis has an error εo, the final classifier has

error < g(εo) =3 εo
2- 2εo

3

• Accuracy improved !!!!
• Apply recursively to get to the target accuracy !!!

CS 2750 Machine Learning

Theoretical Boosting algorithm

• Similarly to boosting the accuracy we can boost the confidence
at some restricted accuracy cost

• The key result: we can improve both the accuracy and
confidence

• Problems with the theoretical algorithm
– A good (better than 50 %) classifier on all data problems
– We cannot properly sample from data-distribution
– Method requires large training set

• Solution to the sampling problem:
– Boosting by sampling

• AdaBoost algorithm and variants

10

CS 2750 Machine Learning

AdaBoost

• AdaBoost: boosting by sampling

• Classification (Freund, Schapire; 1996)
– AdaBoost.M1 (two-class problem)
– AdaBoost.M2 (multiple-class problem)

• Regression (Drucker; 1997)
– AdaBoostR

CS 2750 Machine Learning

AdaBoost
• Given:

– A training set of N examples (attributes + class label pairs)
– A “base” learning model (e.g. a decision tree, a neural

network)
• Training stage:

– Train a sequence of T “base” models on T different sampling
distributions defined upon the training set (D)

– A sample distribution Dt for building the model t is
constructed by modifying the sampling distribution Dt-1 from
the (t-1)th step.

• Examples classified incorrectly in the previous step
receive higher weights in the new data (attempts to cover
misclassified samples)

• Application (classification) stage:
– Classify according to the weighted majority of classifiers

11

CS 2750 Machine Learning

AdaBoost training

.Training
data

LearnDistribution Test

D1 Model 1 Errors 1

D2 Model 2 Errors 2

DT Model T Errors T

…

CS 2750 Machine Learning

AdaBoost algorithm
Training (step t)
• Sampling Distribution

- a probability that example i from the original
training dataset is selected

for the first step (t=1)
• Take K samples from the training set according to
• Train a classifier ht on the samples
• Calculate the error of ht :
• Classifier weight:
• New sampling distribution

)(iD t

tD

NiD /1)(1 =



 =

×=+ otherwise1
)()(

)(1
iitt

t

t
t

yxh
Z

iD
iD

β

tε ∑
≠

=
iit yxhi

tt iD
)(:

)(ε

tD

)1/(ttt εεβ −=

Norm. constant

12

CS 2750 Machine Learning

AdaBoost. Sampling Probabilities
- Nonlinearly separable binary classification
- NN as week learners

Example:

CS 2750 Machine Learning

AdaBoost: Sampling Probabilities

13

CS 2750 Machine Learning

AdaBoost classification

• We have T different classifiers h t
– weight wt of the classifier is proportional to its accuracy on

the training set

• Classification:
For every class j=0,1

• Compute the sum of weights w corresponding to ALL
classifiers that predict class j;

• Output class that correspond to the maximal sum of
weights (weighted majority)

)1/(ttt εεβ −=
()ttttw εεβ /)1(log)/1log(−==

∑
=

=
jxht

t
j

final
t

wh
)(:

maxarg)(x

CS 2750 Machine Learning

• Classifier 1 “yes” 0.7
• Classifier 2 “no” 0.3
• Classifier 3 “no” 0.2

• Weighted majority “yes”

• The final choice is “yes” + 1

Two-Class example. Classification.

0.7 - 0.5 = + 0.2

14

CS 2750 Machine Learning

What is boosting doing?

• Each classifier specializes on a particular subset of examples
• Algorithm is concentrating on “more and more difficult”

examples
• Boosting can:

– Reduce variance (the same as Bagging)
– But also to eliminate the effect of a high bias of the weak

learner (unlike Bagging)
• Train versus test errors performance:

– Train errors can be driven close to 0
– But test errors do not show overfitting

• Proofs and theoretical explanations in a number of papers

CS 2750 Machine Learning

Boosting. Error performances

0 2 4 6 8 10 12 14 16
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4
Training error
Test error
Single-learner error

15

CS 2750 Machine Learning

Bayesian model Averaging

• An alternative to combine multiple models: can be used for
supervised and unsupervised frameworks

• For example:
– Likelihood of the data can be expressed by averaging over

multiple models

– Prediction:

)()|()(
1

i

N

i
i mMPmMDPDP === ∑

=

)(),|()|(
1

i

N

i
i mMPmMxyPxyP === ∑

=

