Dimensionality reduction
Feature selection

Milos Hauskrecht
milos@cs.pitt.edu
5329 Sennott Square

Dimensionality reduction. Motivation.

• Classification problem example:
 – We have an input data \(\{x_1, x_2, ..., x_N\} \) such that
 \[x_i = (x_{i1}, x_{i2}, ..., x_{id}) \]
 and a set of corresponding output labels \(\{y_1, y_2, ..., y_N\} \)
 – Assume the dimension \(d \) of the data point \(x \) is very large
 – We want to classify \(x \)

• Problems with high dimensional input vectors
 – A large number of parameters to learn, if a dataset is small this can result in:
 • Large variance of estimates and overfit
 – it becomes hard to explain what features are important in the model (too many choices some can be substitutable)
Dimensionality reduction

- **Solutions:**
 - **Selection of a smaller subset** of inputs (features) from a large set of inputs; train classifier on the reduced input set
 - **Combination of high dimensional inputs** to a smaller set of features $\phi_i(x)$; train classifier on new features

![Diagram](image)

Feature selection

How to find a good subset of inputs/features?

- **We need:**
 - A criterion for ranking good inputs/features
 - Search procedure for finding a good set of features

- **Feature selection process can be:**
 - **Dependent on the learning task**
 - e.g. classification
 - Selection of features affected by what we want to predict
 - **Independent of the learning task**
 - inputs are reduced without looking at the output
 - PCA, independent component analysis, clustering of inputs
 - may lack the accuracy for classification/regression tasks

![Diagram](image)
Task-dependent feature selection

Assume:
- **Classification problem:** \(x \) – input vector, \(y \) - output
- Feature mappings \(\phi = \{ \phi_1(x), \phi_2(x), \ldots \phi_k(x), \ldots \} \)

Objective: Find a subset of features that gives/preserves most of the output prediction capabilities

Selection approaches:
- **Filtering approaches**
 - Filter out features with small predictive potential
 - done before classification; typically uses univariate analysis
- **Wrapper approaches**
 - Select features that directly optimize the accuracy of the multivariate classifier
- **Embedded methods**
 - Feature selection and learning closely tied in the method

Feature selection through filtering

- **Assume:**
 - **Classification problem:** \(x \) – input vector, \(y \) - output
 - Inputs in \(x \) or feature mappings \(\phi_j(x) \)

- **How to select the feature:**
 - **Univariate analysis**
 - Pretend that only one variable, \(x_k \), exists
 - See how well it predicts the output \(y \) alone
 - **Example:** differentially expressed features (or inputs)
 - Good separation in binary settings
Differentially expressed features

- Scores for measuring the differential expression
 - T-Test score (Baldi & Long)
 - Based on the test that two groups come from the same population
 - Fisher Score
 \[Fisher \ (i) = \frac{\mu_i^+ - \mu_i^-}{\sigma_i^+ + \sigma_i^-} \]
 - Area under Receiver Operating Characteristic (AUC) score

Problems:
- if many random features, the features with a good differentially expressed score must arise
- Techniques to reduce FDR (False discovery rate) and FWER (Family wise error).

Feature filtering

Other univariate scores:
- Correlation coefficients
 \[\rho(\phi_k, y) = \frac{\text{Cov}(\phi_k, y)}{\sqrt{\text{Var}(\phi_k)\text{Var}(y)}} \]
 - Measures linear dependences
- Mutual information
 \[I(\phi_k, y) = \sum_i \sum_j \tilde{P}(\phi_k = j, y = i) \log \frac{\tilde{P}(\phi_k = j, y = i)}{\tilde{P}(\phi_k = j)\tilde{P}(y = i)} \]
- Univariate assumptions:
 - Only one feature and its effect on \(y \) is incorporated in the mutual information score
 - Effects of two features on \(y \) are independent
- What to do if the combination of features gives the best prediction?
Feature selection: dependent features

Filtering with dependent features
- Let Φ be a current set of features (starting from complete set)
- We can remove feature $\phi_k(x)$ from it when:
 \[\tilde{P}(y | \Phi \setminus \phi_k) \approx \tilde{P}(y | \Phi) \] for all values of ϕ_k, y
- Repeat removals until the probabilities differ.

Problem: how to compute/estimate $\tilde{P}(y | \Phi \setminus \phi_k), \tilde{P}(y | \Phi)$?
Solution: make some simplifying assumption about the underlying probabilistic model
- Example: use a Naïve Bayes
- Advantage: speed, modularity, applied before classification
- Disadvantage: may not be as accurate

Feature selection: wrappers

Wrapper approach:
- The feature selection is driven by the prediction accuracy of the classifier (regressor) actually built

How to find the appropriate feature set?
- Idea: Greedy search in the space of classifiers
 - Gradually add features improving most the quality score
 - Gradually remove features that effect the accuracy the least
 - Score should reflect the accuracy of the classifier (error) and also prevent overfit
- Standard way to measure the quality:
 - Internal cross-validation (m-fold cross validation)
Feature selection: wrappers

- **Example of a greedy (forward) search:**
 - logistic regression model with features

 Start with \(p(y = 1 \mid x, w) = g(w.0) \)

 Choose the feature \(\phi_i(x) \) with the best score
 \(p(y = 1 \mid x, w) = g(w.0 + w_i\phi_i(x)) \)

 Choose the feature \(\phi_j(x) \) with the best score
 \(p(y = 1 \mid x, w) = g(w.0 + w_i\phi_i(x) + w_j\phi_j(x)) \)

 Etc.

 When to stop?

Internal cross-validation

- **Goal:** Stop the learning when smallest generalization error (performance on the population from which data were drawn)
- **Test set** can be used to estimate generalization error
 - Data different from the training set
- **Internal validation set** = test set used to stop the learning process
 - E.g. feature selection process
- **Cross-validation** (*m*-fold):
 - Divide the data into *m* equal partitions (of size \(N/m \))
 - Hold out one partition for validation, train the classifier on the rest of the data
 - Repeat such that every partition is held out once
 - The estimate of the generalization error of the learner is the mean of errors of all classifiers
Embedded methods

• **Feature selection + classification model learning** done together
• **Embedded models:**
 – Regularized models
 • Models of higher complexity are explicitly penalized leading to ‘virtual’ removal of inputs from the model
 • Regularized logistic/linear regression
 – **Support vector machines**
 • Optimization of margins penalizes nonzero weights
 – **CART/Decision trees**

Principal component analysis (PCA)

• **Objective:** We want to replace a high dimensional input with a small set of features (obtained by combining inputs)
 – Different from the feature subset selection !!!
• **PCA:**
 – A linear transformation of \(d\) dimensional input \(x\) to \(M\) dimensional feature vector \(z\) such that \(M < d\) under which the retained variance is maximal.
 – Equivalently it is the linear projection for which the sum of squares reconstruction cost is minimized.
PCA

\[X_{\text{prim}} = 0.04x + 0.06y - 0.99z \]
\[Y_{\text{prim}} = 0.70x + 0.70y + 0.07z \]

97% variance retained
Principal component analysis (PCA)

- **PCA:**
 - linear transformation of \(d \) dimensional input \(x \) to \(M \) dimensional feature vector \(z \) such that \(M < d \) under which the retained variance is maximal.
 - Task independent

- **Fact:**
 - A vector \(x \) can be represented using a set of orthonormal vectors \(u \)
 - Leads to transformation of coordinates (from \(x \) to \(z \) using \(u \)'s)

\[
x = \sum_{i=1}^{d} z_i u_i \\
z_i = u_i^T x
\]

PCA

- **Idea:** replace \(d \) coordinates with \(M \) of \(z_i \) coordinates to represent \(x \). We want to find the subset \(M \) of basis vectors.

\[
\tilde{x} = \sum_{i=1}^{M} z_i u_i + \sum_{i=M+1}^{d} b_i u_i
\]

- \(b_i \) - constant and fixed

- **How to choose the best set of basis vectors?**
 - We want the subset that gives the best approximation of data \(x \) in the dataset on average (we use least squares fit)

\[
\text{Error for data entry } \ x^n \quad x^n - \tilde{x}^n = \sum_{i=M+1}^{d} (z_i^n - b_i) u_i
\]

\[
E_M = \frac{1}{2} \sum_{n=1}^{N} \| x^n - \tilde{x}^n \|^2 = \frac{1}{2} \sum_{n=1}^{N} \sum_{i=M+1}^{d} (z_i^n - b_i)^2
\]
PCA

• **Differentiate the error function** with regard to all \(b_i \) and set equal to 0 we get:

\[
b_i = \frac{1}{N} \sum_{n=1}^{N} z_i^n = u_i^T \bar{x} \quad \bar{x} = \frac{1}{N} \sum_{n=1}^{N} x^n
\]

• Then we can rewrite:

\[
E_M = \frac{1}{2} \sum_{i=M+1}^{d} u_i^T \Sigma u_i \quad \Sigma = \sum_{n=1}^{N} (x^n - \bar{x})(x^n - \bar{x})^T
\]

• The error function is optimized when basis vectors satisfy:

\[
\Sigma u_i = \lambda_i u_i \quad E_M = \frac{1}{2} \sum_{i=M+1}^{d} \lambda_i
\]

The best \(M \) basis vectors: discard vectors with \(d-M \) smallest eigenvalues (or keep vectors with \(M \) largest eigenvalues)

Eigenvector \(u_i \) is called a **principal component**

PCA

• Once eigenvectors \(u_i \) with largest eigenvalues are identified, they are used to transform the original \(d \)-dimensional data to \(M \) dimensions

\[
x_2 \quad u_2 \quad u_1 \quad \bar{x} \quad x_1
\]

• To find the “true” dimensionality of the data \(d' \) we can just look at eigenvalues that contribute the most (small eigenvalues are disregarded)

• **Problem**: PCA is a linear method. The “true” dimensionality can be overestimated. There can be non-linear correlations.

CS 2750 Machine Learning
Dimensionality reduction with neural nets

- PCA is limited to linear dimensionality reduction
- To do non-linear reductions we can use neural nets
- **Auto-associative network**: a neural network with the same inputs and outputs \((x)\)

\[z = (z_1, z_2) \]

- The middle layer corresponds to the reduced dimensions

Dimensionality reduction with neural nets

- **Error criterion**:
 \[E = \frac{1}{2} \sum_{n=1}^{N} \sum_{i=1}^{d} (y_i(x^n) - x^n)^2 \]
 - Error measure tries to recover the original data through limited number of dimensions in the middle layer
 - **Non-linearities** modeled through intermediate layers between the middle layer and input/output
 - If no intermediate layers are used the model replicates PCA optimization through learning
Dimensionality reduction through clustering

- **Clustering algorithms**
 - group together “similar” instances in the data sample
- **Dimensionality reduction based on clustering**:
 - Replace a high dimensional data entry with a cluster label
- **Problem**:
 - Deterministic clustering gives only one label per input
 - May not be enough to represent the data for prediction
- **Solutions**:
 - Clustering over subsets of input data
 - Soft clustering (probability of a cluster is used directly)

Soft clustering

- **Soft clustering** (e.g. mixture of Gaussians) attempts to cover all instances in the data sample with a small number of groups
 - Each group is more or less responsible for a data entry
 (responsibility – a posterior of a group given the data entry)

Mixture of G. responsibility

\[
h_{ij} = \frac{\pi_i p(x_i | y_i = i)}{\sum_{u \neq j} \pi_u p(x_i | y_i = u)}
\]

- **Dimensionality reduction based on soft clustering**
 - Replace a high dimensional data with the set of group posteriors
 - Feed all posteriors to the learner e.g. linear regressor, classifier
Dimensionality reduction through clustering

- We can use the idea of soft clustering before applying regression/classification learning

- **Two stage algorithms**
 - Learn the clustering
 - Learn the classification

- Input clustering: \(\mathbf{x} \) (high dimensional)
- Output clustering (Input classifier): \(p(c = i \mid \mathbf{x}) \)
- Output classifier: \(y \)

- **Example: Networks with Radial Basis Functions (RBFs)**

- **Problem:**
 - Clustering learns based on \(p(\mathbf{x}) \) (disregards the target)
 - Prediction based on \(p(y \mid x) \)

Networks with radial basis functions

- An alternative to multilayer NN for non-linearities
- Radial basis functions:
 \[f(x) = w_0 + \sum_{j=1}^{k} w_j \phi_j(x) \]
 - Based on interpolations of prototype points (means)
 - Affected by the distance between the \(\mathbf{x} \) and the mean
 - Fit the outputs of basis functions through the linear model

- Choice of basis functions:
 \[\phi_j(x) = \exp \left(\frac{\|x - \mu_j\|^2}{2\sigma_j^2} \right) \]

- **Learning:**
 - In practice seem to work OK for up to 10 dimensions
 - For higher dimensions (ridge functions – logistic)
 combining multiple learners seem to do better job