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Gaussian mixture model
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Mixture of Gaussians

• Density function for the Mixture of Gaussians model
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Gaussian mixture model
Probability of occurrence of  a data example  x  
is modeled as

where

=  probability of a data point coming 
from class C=i 

= class conditional density (modeled as a Gaussian)
for class i

Remember: C is hidden !!!!
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Generative classifier model
• Generative classifier model with Gaussian densities
• Assume the class labels are known. The ML estimate is
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Gaussian mixture model

• In the Gaussian mixture Gaussians are not labeled
• We can apply EM algorithm:

– re-estimation based on the class posterior
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Gaussian mixture algorithm
• Special case: fixed covariance matrix for all hidden groups 

(classes) and a uniform prior on classes
• Algorithm:

Initialize means        for all classes i
Repeat two steps until no change in the means:
1. Compute the class posterior for each Gaussian and each 

point (a kind of responsibility for a Gaussian for a point)

2. Move the means of the Gaussians to the center of the data, 
weighted by the responsibilities  

iµ

Responsibility:

New mean:
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Gaussian mixture model. Gradient ascent.

• A set of parameters 

Assume unit variance terms and fixed priors C
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EM versus gradient ascent

Gradient ascent                                EM
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K-means approximation to EM

Mixture of Gaussians with the fixed covariance matrix:
• posterior measures the responsibility of a Gaussian for every point

• Re-estimation of means:

• K- Means approximations
• Only the closest Gaussian is made responsible for a point

• Results in moving the means of  Gaussians to the center of the 
data points it covered in the previous step
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K-means algorithm

K-Means algorithm:
Initialize k values of means (centers)
Repeat two steps until no change in the means:
– Partition the data according to the current means (using 

the similarity measure)
– Move the means to the center of the data in the current 

partition

• Used frequently for clustering data
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Clustering
Groups together “similar” instances in the data sample

Basic clustering problem:
• distribute data into k different groups such that data points 

similar to each other are in the same group 
• Similarity between data points is defined in terms of some 

distance metric (can be chosen)

Clustering is useful for:
• Similarity/Dissimilarity  analysis

Analyze what data points in the sample are close to each other 
• Dimensionality reduction

High dimensional data replaced with a group (cluster) label
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Clustering example

• We see data points and want to partition them into groups
• Which data points belong together?
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Clustering example
• We see data points and want to partition them into the groups
• Which data points belong together?
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Clustering example
• We see data points and want to partition them into the groups
• Requires a distance measure to tell us what points are close to 

each other and are in the same group
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