Support vector machines

Outline:

- Algorithms for linear decision boundary
- **Support vector machines**
 - Maximum margin hyperplane.
 - Support vectors.
 - Support vector machines.

- Extensions to the non-separable case.
- Kernel functions.
Linearly separable classes

There is a hyperplane that separates training instances with no error.

Hyperplane:
$\mathbf{w}^T \mathbf{x} + w_0 = 0$

<table>
<thead>
<tr>
<th>Class (+1)</th>
<th>$\mathbf{w}^T \mathbf{x} + w_0 > 0$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class (-1)</td>
<td>$\mathbf{w}^T \mathbf{x} + w_0 < 0$</td>
</tr>
</tbody>
</table>

Logistic regression

• Separating hyperplane: $\mathbf{w}^T \mathbf{x} + w_0 = 0$

• We can use gradient methods or Newton Rhapson for sigmoidal switching functions and learn the weights.
• Recall that we learn the linear decision boundary.
Perceptron algorithm

- **Perceptron algorithm:**
 Simple iterative procedure for modifying the weights of the linear model

 Initialize weights \(w \)

 Loop through examples \((x, y)\) in the dataset \(D\)
 1. Compute \(\hat{y} = w^T x \)
 2. If \(y \neq \hat{y} = -1 \) then \(w^T \leftarrow w^T + x \)
 3. If \(y \neq \hat{y} = +1 \) then \(w^T \leftarrow w^T - x \)

 Until all examples are classified correctly

Properties:
 - **guaranteed convergence**

Solving via LP

Linear program solution:

Finds weights that satisfy the following constraints:

\[
\begin{align*}
 w^T x_i + w_0 & \geq 0 & \text{For all } i, \text{ such that } y_i = +1 \\
 w^T x_i + w_0 & \leq 0 & \text{For all } i, \text{ such that } y_i = -1
\end{align*}
\]

Together:

\(y_i (w^T x_i + w_0) \geq 0 \)

Property: if there is a hyperplane separating the examples, the linear program finds the solution
Optimal separating hyperplane

- There are multiple hyperplanes that separate the data points
 - Which one to choose?
- **Maximum margin** choice: maximizes distance \(d_+ + d_- \)
 - where \(d_+ \) is the shortest distance of a positive example from the hyperplane (similarly \(d_- \) for negative examples)

Maximum margin hyperplane

- For the maximum margin hyperplane only examples on the margin matter (only these affect the distances)
- These are called **support vectors**
Finding maximum margin hyperplanes

- **Assume** that examples in the training set are \((x_i, y_i)\) such that \(y_i \in \{+1, -1\}\)
- **Assume** that all data satisfy:
 \[
 w^T x_i + w_0 \geq 1 \quad \text{for} \quad y_i = +1
 \]
 \[
 w^T x_i + w_0 \leq -1 \quad \text{for} \quad y_i = -1
 \]
- The inequalities can be combined as:
 \[
 y_i (w^T x_i + w_0) - 1 \geq 0 \quad \text{for all} \quad i
 \]
- Equalities define two hyperplanes:
 \[
 w^T x_i + w_0 = 1 \quad \quad w^T x_i + w_0 = -1
 \]

Finding the maximum margin hyperplane

- **Distance** of a point \(x\) with label 1 from the hyperplane:
 \[
 d(x) = (w^T x + w_0) / \|w\|_2
 \]
 \(w\) - normal to the hyperplane \(\|\cdot\|_2\) - Euclidean norm

 Distance of a point \(x'\) with label -1:
 \[
 d(x') = -(w^T x' + w_0) / \|w\|_2
 \]
Finding the maximum margin hyperplane

- **Geometrical margin:** $\rho_{w, w_0}(x, y) = y (w^T x + w_0) / \|w\|_{L_2}$
 For points satisfying: $y_i (w^T x_i + w_0) - 1 = 0$
 The distance is $\frac{1}{\|w\|_{L_2}}$

Width of the margin:
$$d_+ + d_- = \frac{2}{\|w\|_{L_2}}$$

Maximum margin hyperplane

- We want to maximize $d_+ + d_- = \frac{2}{\|w\|_{L_2}}$
- We do it by minimizing
 $$\|w\|_{L_2}^2 / 2 = w^T w / 2$$
 w, w_0 - variables
- But we also need to enforce the constraints on points:
 $$[y_i (w^T x + w_0) - 1] \geq 0$$
Maximum margin hyperplane

- **Solution:** Incorporate constraints into the optimization
- **Optimization problem** (Lagrangian)

\[J(w, w_0, \alpha) = \|w\|^2 / 2 - \sum_{i=1}^{n} \alpha_i [y_i (w^T x + w_0) - 1] \]

\[\alpha_i \geq 0 \quad \text{- Lagrange multipliers} \]

- **Minimize** with respect to \(w, w_0 \) (primal variables)
- **Maximize** with respect to \(\alpha \) (dual variables)

Lagrange multipliers enforce the satisfaction of constraints

If \([y_i (w^T x + w_0) - 1] > 0 \) \(\implies \alpha_i \to 0 \)
Else \(\alpha_i > 0 \) Active constraint

Max margin hyperplane solution

- Set derivatives to 0 (Karush-Kuhn-Tucker (KKT) conditions)

\[\nabla_w J(w, w_0, \alpha) = w - \sum_{i=1}^{n} \alpha_i y_i x_i = 0 \]

\[\frac{\partial J(w, w_0, \alpha)}{\partial w_0} = -\sum_{i=1}^{n} \alpha_i y_i = 0 \]

- Now we need to solve for Lagrange parameters (Wolfe dual)

\[J(\alpha) = \sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i,j=1}^{n} \alpha_i \alpha_j y_i y_j (x_i^T x_j) \implies \text{maximize} \]

Subject to constraints

\[\alpha_i \geq 0 \quad \text{for all } i, \quad \text{and } \sum_{i=1}^{n} \alpha_i y_i = 0 \]

- **Quadratic optimization problem:** solution \(\hat{\alpha}_i \) for all \(i \)
Maximum hyperplane solution

- The resulting parameter vector $\hat{\mathbf{w}}$ can be expressed as:
 $$\hat{\mathbf{w}} = \sum_{i=1}^{n} \hat{\alpha}_i y_i \mathbf{x}_i$$
 $\hat{\alpha}_i$ is the solution of the dual problem

- The parameter w_0 is obtained through Karush-Kuhn-Tucker conditions:
 $$\hat{\alpha}_i \left[y_i (\hat{\mathbf{w}} \cdot \mathbf{x}_i + w_0) - 1 \right] = 0$$

Solution properties

- $\hat{\alpha}_i = 0$ for all points that are not on the margin
- $\hat{\mathbf{w}}$ is a linear combination of support vectors only
- The decision boundary:
 $$\mathbf{w}^T \mathbf{x} + w_0 = \sum_{i \in \mathcal{SV}} \hat{\alpha}_i y_i (\mathbf{x}_i^T \mathbf{x}) + w_0 = 0$$

Support vector machines

- The decision boundary:
 $$\mathbf{w}^T \mathbf{x} + w_0 = \sum_{i \in \mathcal{SV}} \hat{\alpha}_i y_i (\mathbf{x}_i^T \mathbf{x}) + w_0$$

- The decision:
 $$\hat{y} = \text{sign} \left[\sum_{i \in \mathcal{SV}} \hat{\alpha}_i y_i (\mathbf{x}_i^T \mathbf{x}) + w_0 \right]$$
Support vector machines

- The decision boundary:
 \[\hat{w}^T x + w_0 = \sum_{i \in SV} \hat{\alpha}_i y_i (x_i^T x) + w_0 \]

- The decision:
 \[\hat{y} = \text{sign} \left[\sum_{i \in SV} \hat{\alpha}_i y_i (x_i^T x) + w_0 \right] \]

- (!!):
 - Decision on a new \(x \) requires to compute the inner product between the examples \((x_i^T x) \)
 - Similarly, the optimization depends on \((x_i^T x) \)
 \[J(\alpha) = \sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i,j=1}^{n} \alpha_i \alpha_j y_i y_j (x_i^T x_j) \]

Extension to a linearly non-separable case

- Idea: Allow some flexibility on crossing the separating hyperplane
Extension to the linearly non-separable case

• Relax constraints with variables $\xi_i \geq 0$
 $w^T x_i + w_0 \geq 1 - \xi_i$ for $y_i = +1$
 $w^T x_i + w_0 \leq -1 + \xi_i$ for $y_i = -1$

• Error occurs if $\xi_i \geq 1$, $\sum_{i=1}^{n} \xi_i$ is the upper bound on the number of errors

• Introduce a penalty for the errors

\[
\text{minimize} \quad \|w\|^2 / 2 + C \sum_{i=1}^{n} \xi_i
\]
Subject to constraints

C – set by a user, larger C leads to a larger penalty for an error

Extension to linearly non-separable case

• Lagrange multiplier form (primal problem)

\[
J(w, w_0, \alpha) = \|w\|^2 / 2 + C \sum_{i=1}^{n} \xi_i - \sum_{i=1}^{n} \alpha_i [y_i (w^T x + w_0) - 1 + \xi_i] - \sum_{i=1}^{n} \mu_i \xi_i
\]

• Dual form after w, w_0 are expressed (ξ_i s cancel out)

\[
J(\alpha) = \sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i,j=1}^{n} \alpha_i \alpha_j y_i y_j (x_i^T x_j)
\]
Subject to: $0 \leq \alpha_i \leq C$ for all i, and $\sum_{i=1}^{n} \alpha_i y_i = 0$

Solution:

\[
\hat{w} = \sum_{i=1}^{n} \hat{\alpha}_i y_i x_i
\]

The difference from the separable case: $0 \leq \alpha_i \leq C$

The parameter w_0 is obtained through KKT conditions
Support vector machines

- **The decision boundary:**
 \[\hat{w}^T x + w_0 = \sum_{i \in SV} \hat{\alpha}_i y_i (x_i^T x) + w_0 \]

- **The decision:**
 \[\hat{y} = \text{sign} \left(\sum_{i \in SV} \hat{\alpha}_i y_i (x_i^T x) + w_0 \right) \]

- (!!):
 - Decision on a new \(x \) requires to compute the inner product between the examples \((x_i^T x) \)
 - Similarly, the optimization depends on \((x_i^T x_j) \)
 - \[
 J(\alpha) = \sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i,j=1}^{n} \alpha_i \alpha_j y_i y_j (x_i^T x_j) \]

Nonlinear case

- The linear case requires to compute \((x_i^T x) \)
- The non-linear case can be handled by using a set of features. Essentially we map input vectors to (larger) feature vectors
 \[x \rightarrow \phi(x) \]
- It is possible to use SVM formalism on feature vectors
 \[\phi(x)^T \phi(x') \]
- **Kernel function**
 \[K(x, x') = \phi(x)^T \phi(x') \]
- **Crucial idea:** If we choose the kernel function wisely we can compute linear separation in the feature space implicitly such that we keep working in the original input space !!!!
Kernel function example

- Assume $x = [x_1, x_2]^T$ and a feature mapping that maps the input into a quadratic feature set

$$x \rightarrow \phi(x) = [x_1^2, x_2^2, \sqrt{2}x_1x_2, \sqrt{2}x_1, \sqrt{2}x_2, 1]^T$$

- Kernel function for the feature space:

$$K(x', x) = \phi(x')^T \phi(x)$$

$$= x_1^2x_1'^2 + x_2^2x_2'^2 + 2x_1x_2x_1'x_2' + 2x_1x_1' + 2x_2x_2' + 1$$

$$= (x_1x_1' + x_2x_2' + 1)^2$$

$$= (1 + (x^T x'))^2$$

- The computation of the linear separation in the higher dimensional space is performed implicitly in the original input space

Nonlinear extension

Kernel trick

- Replace the inner product with a kernel
- A well chosen kernel leads to efficient computation
Kernel function example

Linear separator in the feature space

Non-linear separator in the input space

Kernel functions

- **Linear kernel**
 \[K(x, x') = x^T x' \]

- **Polynomial kernel**
 \[K(x, x') = \left[1 + x^T x' \right]^k \]

- **Radial basis kernel**
 \[K(x, x') = \exp \left[-\frac{1}{2} \| x - x' \|^2 \right] \]
Kernels

- SVM researchers have proposed kernels for comparison of variety of objects:
 - Strings
 - Trees
 - Graphs
- **Cool thing:**
 - SVM algorithm can be now applied to classify a variety of objects