CS 2750 Machine Learning

 Lecture 11
Support vector machines

Milos Hauskrecht
milos@cs.pitt.edu
5329 Sennott Square

Outline

Outline:

- Fisher Linear Discriminant
- Algorithms for linear decision boundary
- Support vector machines
- Maximum margin hyperplane.
- Support vectors.
- Support vector machines.
- Extensions to the non-separable case.
- Kernel functions.

Fisher linear discriminant

- Project data into one dimension

$$
y=\mathbf{w}^{T} \mathbf{x}
$$

Decision: $\quad y=\mathbf{w}^{T} \mathbf{x}+w_{0} \geq 0$

- How to find the projection line?

Fisher linear discriminant

How to find the projection line?

$$
y=\mathbf{w}^{T} \mathbf{x}
$$

Fisher linear discriminant

Assume:

$$
\mathbf{m}_{1}=\frac{1}{N_{1}} \sum_{i \in C_{1}}^{N_{1}} \mathbf{x}_{i} \quad \mathbf{m}_{2}=\frac{1}{N_{2}} \sum_{i \in C_{2}}^{N_{2}} \mathbf{x}_{i}
$$

Maximize the difference in projected means:

$$
m_{2}-m_{1}=\mathbf{w}^{T}\left(\mathbf{m}_{2}-\mathbf{m}_{1}\right)
$$

Fisher linear discriminant

Problem 1: $\quad m_{2}-m_{1}=\mathbf{w}^{T}\left(\mathbf{m}_{2}-\mathbf{m}_{1}\right) \quad$ can be maximized by increasing \mathbf{w}
Problem 2: variance in class distributions after projection is changed

Fisher's solution: $\quad J(\mathbf{w})=\frac{m_{2}-m_{1}}{s_{1}^{2}+s_{2}^{2}}$
Within class variance

$$
s_{k}^{2}=\sum_{i \in C_{k}}\left(y_{i}-m_{k}\right)^{2}
$$

Fisher linear discriminant

Error:

$$
J(\mathbf{w})=\frac{m_{2}-m_{1}}{s_{1}^{2}+s_{2}^{2}}
$$

Within class variance after the projection

$$
s_{k}^{2}=\sum_{i \in C_{k}}\left(y_{i}-m_{k}\right)^{2}
$$

Optimal solution:

$$
\begin{gathered}
\mathbf{w} \approx \mathbf{S}_{\mathbf{w}}^{-1}\left(\mathbf{m}_{2}-\mathbf{m}_{1}\right) \\
\mathbf{S}_{\mathbf{w}}=\sum_{i \in C_{1}}\left(\mathbf{x}_{i}-\mathbf{m}_{1}\right)\left(\mathbf{x}_{i}-\mathbf{m}_{1}\right)^{T} \\
+\sum_{i \in C_{2}}\left(\mathbf{x}_{i}-\mathbf{m}_{2}\right)\left(\mathbf{x}_{i}-\mathbf{m}_{2}\right)^{T}
\end{gathered}
$$

Linearly separable classes

There is a hyperplane that separates training instances with no error

Algorithms for linearly separable set

- Separating hyperplane $\quad \mathbf{w}^{T} \mathbf{x}+w_{0}=0$

- We can use gradient methods or Newton Rhapson for sigmoidal switching functions and learn the weights
- Recall that we learn the linear decision boundary

Algorithms for linearly separable set

- Separating hyperplane $\quad \mathbf{w}^{T} \mathbf{x}+w_{0}=0$

Algorithms for linearly separable sets

- Perceptron algorithm:

Simple iterative procedure for modifying the weights of the
linear model
Initialize weights \mathbf{w}
Loop through examples (\mathbf{x}, y) in the dataset D

1. Compute $\hat{y}=\mathbf{w}^{T} \mathbf{x}$
2. If $y \neq \hat{y}=-1$ then $\mathbf{w}^{T} \leftarrow \mathbf{w}^{T}+\mathbf{x}$
3. If $y \neq \hat{y}=+1$ then $\mathbf{w}^{T} \leftarrow \mathbf{w}^{T}-\mathbf{x}$

Until all examples are classified correctly
Properties:
guaranteed convergence

Algorithms for linearly separable sets

Linear program solution:

- Finds weights that satisfy the following constraints:

$\mathbf{w}^{T} \mathbf{x}_{i}+w_{0} \geq 0 \quad$ For all i, such that $\quad y_{i}=+1$
$\mathbf{w}^{T} \mathbf{x}_{i}+w_{0} \leq 0 \quad$ For all i, such that $y_{i}=-1$
Together: $\quad y_{i}\left(\mathbf{w}^{T} \mathbf{x}_{i}+w_{0}\right) \geq 0$
Property: if there is a hyperplane separating the examples, the linear program finds the solution

Optimal separating hyperplane

- There are multiple hyperplanes that separate the data points
- Which one to choose?
- Maximum margin choice: the maximum distance of $d_{+}+d_{-}$
- where d_{+}is the shortest distance of a positive example from the hyperplane (similarly d_{-}for negative examples)

Maximum margin hyperplane

- For the maximum margin hyperplane only examples on the margin matter (only these affect the distances)
- These are called support vectors

Finding maximum margin hyperplanes

- Assume that examples in the training set are $\left(\mathbf{x}_{i}, y_{i}\right)$ such that $y_{i} \in\{+1,-1\}$
- Assume that all data satisfy:

$$
\begin{array}{lll}
\mathbf{w}^{T} \mathbf{x}_{i}+w_{0} \geq 1 & \text { for } & y_{i}=+1 \\
\mathbf{w}^{T} \mathbf{x}_{i}+w_{0} \leq-1 & \text { for } & y_{i}=-1
\end{array}
$$

- The inequalities can be combined as:

$$
y_{i}\left(\mathbf{w}^{T} \mathbf{x}_{i}+w_{0}\right)-1 \geq 0 \quad \text { for all } \quad i
$$

- Equalities define two hyperplanes:

$$
\mathbf{w}^{T} \mathbf{x}_{i}+w_{0}=1 \quad \mathbf{w}^{T} \mathbf{x}_{i}+w_{0}=-1
$$

Finding the maximum margin hyperplane

- Geometrical margin; $\rho_{\mathbf{w}, w_{0}}(\mathbf{x}, y)=y\left(\mathbf{w}^{T} \mathbf{x}+w_{0}\right) /\|\mathbf{w}\|_{L 2}$
- measures the distance of a point \mathbf{x} from the hyperplane \mathbf{w} - normal to the hyperplane $\|. .\|_{L 2}$ - Euclidean norm

For points satisfying: $y_{i}\left(\mathbf{w}^{T} \mathbf{x}_{i}+w_{0}\right)-1=0$
The distance is $\frac{1}{\|\mathbf{w}\|_{L 2}}$
Width of the margin:

$$
d_{+}+d_{-}=\frac{2}{\|\mathbf{w}\|_{L 2}}
$$

Maximum margin hyperplane

- We want to maximize $d_{+}+d_{-}=\frac{2}{\|\mathbf{w}\|_{L 2}}$
- We do it by minimizing

$$
\|\mathbf{w}\|_{L 2}{ }^{2} / 2=\mathbf{w}^{T} \mathbf{w} / 2
$$

$\mathbf{w}, w_{0} \quad$ - variables

- But we also need to enforce the constraints on points:

$$
\left\lfloor y_{i}\left(\mathbf{w}^{T} \mathbf{x}+w_{0}\right)-1\right\rfloor \geq 0
$$

Maximum margin hyperplane

- Solution: Incorporate constraints into the optimization
- Optimization problem (Lagrangian)

$$
\begin{gathered}
J\left(\mathbf{w}, w_{0}, \alpha\right)=\|\mathbf{w}\|^{2} / 2-\sum_{i=1}^{n} \alpha_{i}\left[y_{i}\left(\mathbf{w}^{T} \mathbf{x}+w_{0}\right)-1\right] \\
\alpha_{i} \geq 0 \quad \text { - Lagrange multipliers }
\end{gathered}
$$

- Minimize with respect to $\mathbf{w}, w_{0} \quad$ (primal variables)
- Maximize with respect to $\boldsymbol{\alpha}$ (dual variables)

Lagrange multipliers enforce the satisfaction of constraints

$$
\text { If } \begin{aligned}
{\left[y_{i}\left(\mathbf{w}^{T} \mathbf{x}+w_{0}\right)-1\right]>0 } & \Longrightarrow \alpha_{i} \rightarrow 0 \\
\text { Else } & \Longleftrightarrow \alpha_{i}>0
\end{aligned} \text { Active constraint }
$$

