Density estimation

Milos Hauskrecht
milos@cs.pitt.edu
5329 Sennott Square

Announcements

Next lecture:
• Matlab tutorial

Rules for attending the class:
• Registered for credit
• Registered for audit (only if there are available seats)

Rules for audit:
• Homework assignments
Review

Design cycle

Data

Feature selection

Model selection

Learning

Evaluation

Require prior knowledge
Data

Data may need a lot of:

- Cleaning
- Preprocessing (conversions)

Cleaning:

- Get rid of errors, noise,
- Removal of redundancies

Preprocessing:

- Renaming
- Rescaling (normalization)
- Discretizations
- Abstraction
- Aggregation
- New attributes

Data biases

- **Watch out for data biases:**
 - Try to understand the data source
 - It is very easy to derive “unexpected” results when data used for analysis and learning are biased (pre-selected)

- **Results (conclusions) derived for pre-selected data do not hold in general !!!**
Data biases

Example 1: Risks in pregnancy study
- Sponsored by DARPA at military hospitals
- Study of a large sample of pregnant woman who visited military hospitals
- **Conclusion:** the factor with the largest impact on reducing risks during pregnancy (statistically significant) is a pregnant woman being single
- Single woman → the smallest risk
- What is wrong?

Data

Example 2: Stock market trading (example by Andrew Lo)
- Data on stock performances of companies traded on stock market over past 25 year
- **Investment goal:** pick a stock to hold long term
- **Proposed strategy:** invest in a company stock with an IPO corresponding to a Carmichael number
- **Evaluation result:** excellent return over 25 years
- Where the magic comes from?
Feature selection

- **The size (dimensionality) of a sample** can be enormous
 \[x_i = (x_i^1, x_i^2, \ldots, x_i^d) \quad d \quad - \text{very large} \]
- **Example: document classification**
 - 10,000 different words
 - Inputs: counts of occurrences of different words
 - Too many parameters to learn (not enough samples to justify the estimates the parameters of the model)
- **Dimensionality reduction: replace inputs with features**
 - **Extract relevant inputs** (e.g. mutual information measure)
 - **PCA** – principal component analysis
 - **Group (cluster) similar words** (uses a similarity measure)
 - Replace with the group label
Model selection

- **What is the right model to learn?**
 - E.g what polynomial to use
 - A prior knowledge helps a lot, but still a lot of guessing
 - **Initial data analysis and visualization**
 - We can make a good guess about the form of the distribution, shape of the function

- **Overfitting problem**
 - Take into account the **bias and variance** of error estimates
 - Simpler (more biased) model – parameters can be estimated more reliably (smaller variance of estimates)
 - Complex model with many parameters – parameter estimates are less reliable (large variance of the estimate)
Solutions for overfitting

How to make the learner avoid the overfit?

- **Assure sufficient number of samples** in the training set
 - May not be possible (small number of examples)
- **Hold some data out of the training set = validation set**
 - Train (fit) on the training set (w/o data held out);
 - Check for the generalization error on the validation set, choose the model based on the validation set error
 (random resampling validation techniques)
- **Regularization (Occam’s Razor)**
 - Penalize for the model complexity (number of parameters)
 - Explicit preference towards simple models

Design cycle

- **Data**
- **Feature selection**
- **Model selection**
- **Learning**
- **Evaluation**

Require prior knowledge
Learning

- **Learning = optimization problem.** Various criteria:
 - **Mean square error**
 \[
 w^* = \text{arg min}_w \text{Error}(w) \quad \text{Error}(w) = \frac{1}{N} \sum_{i=1}^{N} (y_i - f(x_i, w))^2
 \]
 - **Maximum likelihood (ML) criterion**
 \[
 \Theta^* = \text{arg max}_\Theta P(D | \Theta) \quad \text{Error}(\Theta) = -\log P(D | \Theta)
 \]
 - **Maximum posterior probability (MAP)**
 \[
 \Theta^* = \text{arg max}_\Theta P(\Theta | D) \quad P(\Theta | D) = \frac{P(D | \Theta)P(\Theta)}{P(D)}
 \]

Learning

Learning = optimization problem

- Optimization problems can be hard to solve. Right choice of a model and an error function makes a difference.

- **Parameter optimizations**
 - Gradient descent, Conjugate gradient (1st order method)
 - Newton-Rhapson (2nd order method)
 - Levenberg-Marquard

 Some can be carried on-line on a sample by sample basis

- **Combinatorial optimizations (over discrete spaces):**
 - Hill-climbing
 - Simulated-annealing
 - Genetic algorithms
Evaluation.

- **Simple holdout method.**
 - Divide the data to the training and test data.
- **Other more complex methods**
 - Based on random re-sampling validation schemes:
 - cross-validation, random sub-sampling.
 - What if we want to compare the predictive performance on a classification or a regression problem for two different learning methods?
- **Solution:** compare the error results on the test data set
 - The method with better (smaller) testing error gives a better generalization error.
 - But we need statistics to show significance
Density estimation

Outline:

- **Density estimation:**
 - Maximum likelihood (ML)
 - Bayesian parameter estimates
 - MAP
- Bernoulli distribution.
- Binomial distribution
- Multinomial distribution
- Normal distribution
Density estimation

Data: \(D = \{D_1, D_2, \ldots, D_n\} \)

\(D_i = x_i \) a vector of attribute values

Attributes:

- modeled by random variables \(\mathbf{X} = \{X_1, X_2, \ldots, X_d\} \) with:
 - Continuous values
 - Discrete values

 E.g. *blood pressure* with numerical values
 or *chest pain* with discrete values

 [no-pain, mild, moderate, strong]

Underlying true probability distribution:

\[p(\mathbf{X}) \]

Density estimation

Data: \(D = \{D_1, D_2, \ldots, D_n\} \)

\(D_i = x_i \) a vector of attribute values

Objective: try to estimate the underlying ‘true’ probability distribution over variables \(\mathbf{X} \), \(p(\mathbf{X}) \), using examples in \(D \)

![Diagram](image.png)

Standard (iid) assumptions: Samples

- are independent of each other
- come from the same (identical) distribution (fixed \(p(\mathbf{X}) \))

CS 2750 Machine Learning
Density estimation

Types of density estimation:

Parametric
- the distribution is modeled using a set of parameters \(\Theta \)

 \[p(\mathbf{X} | \Theta) \]
- **Example**: mean and covariances of a multivariate normal
- **Estimation**: find parameters \(\Theta \) describing data \(D \)

Non-parametric
- The model of the distribution utilizes all examples in \(D \)
- As if all examples were parameters of the distribution
- **Examples**: Nearest-neighbor

Semi-parametric

Learning via parameter estimation

In this lecture we consider **parametric density estimation**

Basic settings:
- A set of random variables \(\mathbf{X} = \{X_1, X_2, \ldots, X_d\} \)
- **A model of the distribution** over variables in \(\mathbf{X} \)
 with parameters \(\Theta \) : \(\hat{p}(\mathbf{X} | \Theta) \)

- **Data** \(D = \{D_1, D_2, \ldots, D_n\} \)

Objective: find parameters \(\Theta \) such that \(p(\mathbf{X} | \Theta) \) describes data \(D \) the best
Parameter estimation.

• **Maximum likelihood (ML)**

 maximize $ p(D \mid \Theta, \xi) $

 yields: one set of parameters $ \Theta_{ML} $

 the target distribution is approximated as:

 $$ \hat{p}(X) = p(X \mid \Theta_{ML}) $$

• **Bayesian parameter estimation**

 uses the posterior distribution over possible parameters

 $$ p(\Theta \mid D, \xi) = \frac{p(D \mid \Theta, \xi) p(\Theta \mid \xi)}{p(D \mid \xi)} $$

 Yields: all possible settings of $ \Theta $ (and their “weights”)

 The target distribution is approximated as:

 $$ \hat{p}(X) = p(X \mid D) = \int p(X \mid \Theta) p(\Theta \mid D, \xi) d\Theta $$

Other possible criteria:

• **Maximum a posteriori probability (MAP)**

 maximize $ p(\Theta \mid D, \xi) $ (mode of the posterior)

 Yields: one set of parameters $ \Theta_{MAP} $

 Approximation:

 $$ \hat{p}(X) = p(X \mid \Theta_{MAP}) $$

• **Expected value of the parameter**

 $ \hat{\Theta} = E(\Theta) $ (mean of the posterior)

 Expectation taken with regard to posterior $ p(\Theta \mid D, \xi) $

 Yields: one set of parameters

 Approximation:

 $$ \hat{p}(X) = p(X \mid \hat{\Theta}) $$
Parameter estimation. Coin example.

Coin example: we have a coin that can be biased

Outcomes: two possible values -- head or tail

Data: \(D \) a sequence of outcomes \(x_i \) such that

- **head** \(x_i = 1 \)
- **tail** \(x_i = 0 \)

Model: probability of a head \(\theta \)
probability of a tail \((1 - \theta) \)

Objective:
We would like to estimate the probability of a head \(\hat{\theta} \)
from data

Parameter estimation. Example.

- Assume the unknown and possibly biased coin
- Probability of the head is \(\theta \)
- **Data:**

 \[
 \begin{array}{cccccccccccccccc}
 H & H & T & T & H & H & T & H & T & T & T & H & T & H & T & H & H & H & H & H & H & T \\
 \end{array}
 \]
 - **Heads:** 15
 - **Tails:** 10

What would be your estimate of the probability of a head?

\(\hat{\theta} = ? \)
Parameter estimation. Example

• **Assume** the unknown and possibly biased coin
• Probability of the head is \(\theta \)

Data:

\[
\begin{align*}
\text{H H T T H H T H T T H T H T H H H T H H H T T H}
\end{align*}
\]

– **Heads:** 15
– **Tails:** 10

What would be your choice of the probability of a head?

Solution: use frequencies of occurrences to do the estimate

\[
\hat{\theta} = \frac{15}{25} = 0.6
\]

This is the **maximum likelihood estimate** of the parameter \(\theta \)

Probability of an outcome

Data: \(D \) a sequence of outcomes \(x_i \) such that

• **head** \(x_i = 1 \)
• **tail** \(x_i = 0 \)

Model: probability of a head \(\theta \) probability of a tail \((1 - \theta) \)

Assume: we know the probability \(\theta \)

Probability of an outcome of a coin flip \(x_i \)

\[
P(x_i \mid \theta) = \theta^{x_i} (1 - \theta)^{1-x_i} \quad \text{Bernoulli distribution}
\]

– Combines the probability of a head and a tail
– So that \(x_i \) is going to pick its correct probability
– Gives \(\theta \) for \(x_i = 1 \)
– Gives \((1 - \theta) \) for \(x_i = 0 \)
Probability of a sequence of outcomes.

Data: \(D \) a sequence of outcomes \(x_i \) such that

- head \(x_i = 1 \)
- tail \(x_i = 0 \)

Model: probability of a head \(\theta \)
probability of a tail \(1 - \theta \)

Assume: a sequence of independent coin flips

\(D = H \ H \ T \ H \ T \ H \) (encoded as \(D = 110101 \))

What is the probability of observing the data sequence \(D \):

\[
P(D | \theta) = ?
\]
Probability of a sequence of outcomes.

Data: \(D \) a sequence of outcomes \(x_i \) such that
- head \(x_i = 1 \)
- tail \(x_i = 0 \)

Model: probability of a head \(\theta \)
probability of a tail \(1 - \theta \)

Assume: a sequence of coin flips \(D = H H T H T H \)
encoded as \(D = 110101 \)

What is the probability of observing a data sequence \(D \):\n
\[
P(D \mid \theta) = \theta \theta (1 - \theta) \theta (1 - \theta) \theta
\]

likelihood of the data

Can be rewritten using the Bernoulli distribution:
The goodness of fit to the data.

Learning: we do not know the value of the parameter θ

Our learning goal:
- Find the parameter θ that fits the data D the best?

One solution to the “best”: Maximize the likelihood

$$P(D \mid \theta) = \prod_{i=1}^{n} \theta^{x_{i}} (1 - \theta)^{(1-x_{i})}$$

Intuition:
- more likely are the data given the model, the better is the fit

Note: Instead of an error function that measures how bad the data fit the model we have a measure that tells us how well the data fit:

$$\text{Error} (D, \theta) = -P(D \mid \theta)$$

Example: Bernoulli distribution.

Coin example: we have a coin that can be biased

Outcomes: two possible values -- head or tail

Data: D a sequence of outcomes x_{i} such that
- head $x_{i} = 1$
- tail $x_{i} = 0$

Model: probability of a head θ
- probability of a tail $(1 - \theta)$

Objective:
- We would like to estimate the probability of a head $\hat{\theta}$

Probability of an outcome x_{i}

$$P(x_{i} \mid \theta) = \theta^{x_{i}} (1 - \theta)^{(1-x_{i})} \quad \text{Bernoulli distribution}$$
Maximum likelihood (ML) estimate.

Likelihood of data:
\[P(D \mid \theta, \xi) = \prod_{i=1}^{n} \theta^{x_i} (1 - \theta)^{(1-x_i)} \]

Maximum likelihood estimate
\[\theta_{ML} = \arg \max_{\theta} P(D \mid \theta, \xi) \]

Optimize log-likelihood (the same as maximizing likelihood)
\[l(D, \theta) = \log P(D \mid \theta, \xi) = \log \prod_{i=1}^{n} \theta^{x_i} (1 - \theta)^{(1-x_i)} = \sum_{i=1}^{n} x_i \log \theta + (1-x_i) \log(1-\theta) = \log \theta \sum_{i=1}^{n} x_i + \log(1-\theta) \sum_{i=1}^{n} (1-x_i) \]

\[N_1 \text{ - number of heads seen} \quad N_2 \text{ - number of tails seen} \]

Maximum likelihood (ML) estimate.

Optimize log-likelihood
\[l(D, \theta) = N_1 \log \theta + N_2 \log(1-\theta) \]

Set derivative to zero
\[\frac{\partial l(D, \theta)}{\partial \theta} = \frac{N_1}{\theta} - \frac{N_2}{(1-\theta)} = 0 \]

Solving
\[\theta = \frac{N_1}{N_1 + N_2} \]

ML Solution:
\[\theta_{ML} = \frac{N_1}{N} = \frac{N_1}{N_1 + N_2} \]
Maximum likelihood estimate. Example

• **Assume** the unknown and possibly biased coin
• Probability of the head is θ

• **Data:**

 H H T T H H T H T T T H T H T H T H H H T H H H H T

 – **Heads:** 15
 – **Tails:** 10

What is the ML estimate of the probability of a head and a tail?

\[
\text{Head: } \theta_{ML} = \frac{N_1}{N} = \frac{N_1}{N_1 + N_2} = \frac{15}{25} = 0.6
\]

\[
\text{Tail: } (1 - \theta_{ML}) = \frac{N_2}{N} = \frac{N_2}{N_1 + N_2} = \frac{10}{25} = 0.4
\]