Dimensionality reduction
Feature selection

Milos Hauskrecht
milos@cs.pitt.edu
5329 Sennott Square

Dimensionality reduction. Motivation.

• Classification problem example:
 – We have an input data \(\{x_1, x_2, \ldots, x_N \} \) such that
 \[x_i = (x_{i1}, x_{i2}, \ldots, x_{id}) \]
 and a set of corresponding output labels \(\{y_1, y_2, \ldots, y_N \} \)
 – Assume the dimension \(d \) of the data point \(x \) is very large
 – We want to classify \(x \)

• Problems with high dimensional input vectors
 – A large number of parameters to learn, if a dataset is small this can result in:
 • Large variance of estimates and overfit
 – It becomes hard to explain what features are important in the model (too many choices some can be substitutable)
Dimensionality reduction.

• **Solutions:**
 – **Selection of a smaller subset** of inputs (features) from a large set of inputs; train classifier on the reduced input set
 – **Combination of high dimensional inputs** to a smaller set of features \(\phi_k(\mathbf{x}) \); train classifier on new features

Feature selection

How to find a good subset of inputs/features?

• **We need:**
 – A criterion for ranking good inputs/features
 – Search procedure for finding a good set of features

• **Feature selection process can be:**
 – **Dependent on the learning task**
 • e.g. classification
 • Selection of features affected by what we want to predict
 – **Independent of the learning task**
 • inputs are reduced without looking at the output
 – PCA, component analysis, clustering of inputs
 • may lack the accuracy for classification/regression tasks
Task-dependent feature selection

Assume:
- **Classification problem**: \(x \) – input vector, \(y \) - output
- Feature mappings \(\phi = \{ \phi_1(x), \phi_2(x), \ldots, \phi_k(x), \ldots \} \)

Objective: Find a subset of features that gives/preserves most of the output prediction capabilities

Selection approaches:
- **Filtering approaches**
 - Filter out features with small predictive potential
 - done before classification; typically uses univariate analysis
- **Wrapper approaches**
 - Select features that directly optimize the accuracy of the multivariate classifier
- **Embedded methods**
 - Feature selection and learning closely tied in the method

Feature selection through filtering

Assume:
- Classification problem: \(x \) – input vector, \(y \) - output
- Inputs in \(x \) or feature mappings \(\phi_k(x) \)

How to select the feature:
- **Univariate analysis**
 - Pretend that only one variable, \(x_k \), exists
 - See how well it predicts the output \(y \) alone
- **Example**: differentially expressed features (or inputs)
 - Good separation in binary (case/control settings)
Differentially expressed features

• **Criteria for measuring the differential expression**
 – T-Test score (Baldi & Long)
 • Based on the test that two groups come from the same population
 – Fisher Score \[Fisher \ (i) = \frac{\mu_i^{(+)} - \mu_i^{(-)}}{\sigma_i^{(+)} + \sigma_i^{(-)}}^2 \]
 – Area under Receiver Operating Characteristic (AUC) score

Problems:
– if many random features, the features with a good differentially expressed score must arise
– Techniques to reduce FDR (False discovery rate) and FWER (Family wise error).

Feature filtering

Other univariate scores:

• **Correlation coefficients** \[\rho(\phi_k, y) = \frac{Cov(\phi_k, y)}{\sqrt{Var(\phi_k)Var(y)}} \]
 – Measures **linear dependences**

• **Mutual information** \[I(\phi_k, y) = \sum_i \sum_j \tilde{P}(\phi_k = j, y = i) \log_2 \frac{\tilde{P}(\phi_k = j, y = i)}{\tilde{P}(\phi_k = j)\tilde{P}(y = i)} \]

• **Univariate assumptions:**
 – Only one feature and its effect on \(y \) is incorporated in the mutual information score
 – Effects of two features on \(y \) are independent

• What to do if the combination of features gives the best prediction?
Feature selection: dependent features

Filtering with dependent features
- Let \(\Phi \) be a current set of features (starting from complete set)
- We can remove feature \(\phi_k(x) \) from it when:
 \(\tilde{P}(y | \Phi \setminus \phi_k) \approx \tilde{P}(y | \Phi) \) for all values of \(\phi_k, y \)
- Repeat removals until the probabilities differ too much.

Problem: how to compute/estimate \(\tilde{P}(y | \Phi \setminus \phi_k), \tilde{P}(y | \Phi) \)?

Solution: make some simplifying assumption about the underlying probabilistic model
- Example: use a Naïve Bayes
- Advantage: speed, modularity, applied before classification
- Disadvantage: may not be as accurate

Feature selection: wrappers

Wrapper approach:
- The feature selection is driven by the prediction accuracy of the classifier (regressor) actually built

How to find the appropriate feature set?
- Idea: Greedy search in the space of classifiers
 - Gradually add features improving most the quality score
 - Gradually remove features that effect the accuracy the least
 - Score should reflect the accuracy of the classifier (error) and also prevent overfit
- Standard way to measure the quality:
 - Internal cross-validation (m-fold cross validation)
Feature selection: wrappers

- **Example of a greedy (forward) search:**
 - logistic regression model with features

 \[
 p(y = 1 \mid \mathbf{x}, \mathbf{w}) = g(w_o)
 \]

 Choose the feature \(\phi_i(\mathbf{x}) \) with the best score

 \[
 p(y = 1 \mid \mathbf{x}, \mathbf{w}) = g(w_o + w_i\phi_i(\mathbf{x}))
 \]

 Choose the feature \(\phi_j(\mathbf{x}) \) with the best score

 \[
 p(y = 1 \mid \mathbf{x}, \mathbf{w}) = g(w_o + w_i\phi_i(\mathbf{x}) + w_j\phi_j(\mathbf{x}))
 \]

 Etc.

 When to stop?

Internal cross-validation

- **Goal:** Stop the learning when smallest generalization error (performance on the population from which data were drawn)
- **Test set** can be used to estimate generalization error
 - Data different from the training set
- **Internal validation set** = test set used to stop the learning process
 - E.g. feature selection process
- **Cross-validation (m-fold):**
 - Divide the data into \(m \) equal partitions (of size \(N/m \))
 - Hold out one partition for validation, train the classifier on the rest of data
 - Repeat such that every partition is held out once
 - The estimate of the generalization error of the learner is the mean of errors of all classifiers
Embedded methods

- **Feature selection + classification model learning** done together
- **Embedded models:**
 - Regularized models
 - Models of higher complexity are explicitly penalized leading to ‘virtual’ removal of inputs from the model
 - Regularized logistic/linear regression
 - Support vector machines
 - Optimization of margins penalizes nonzero weights
 - CART/Decision trees

Principal component analysis (PCA)

- **Objective:** We want to replace a high dimensional input with a small set of features (obtained by combining inputs)
 - Different from the feature subset selection !!!
- **PCA:**
 - A linear transformation of \(d\) dimensional input \(x\) to \(M\) dimensional feature vector \(z\) such that \(M < d\) under which the retained variance is maximal.
 - Equivalently it is the linear projection for which the sum of squares reconstruction cost is minimized.
PCA

$X_{prim} = 0.04x + 0.06y - 0.99z$

$Y_{prim} = 0.70x + 0.70y + 0.07z$

97% variance retained
Principal component analysis (PCA)

- **PCA:**
 - linear transformation of \(d\) dimensional input \(x\) to \(M\) dimensional feature vector \(z\) such that \(M < d\) under which the retained variance is maximal.
 - Task independent

- **Fact:**
 - A vector \(x\) can be represented using a set of orthonormal vectors \(u\)
 \[
 x = \sum_{i=1}^{d} z_i u_j
 \]
 - Leads to transformation of coordinates (from \(x\) to \(z\) using \(u\)’s)
 \[
 z_i = u_i^T x
 \]

PCA

- **Idea:** replace \(d\) coordinates with \(M\) of \(z_i\) coordinates to represent \(x\). We want to find the subset \(M\) of basis vectors.

 \[
 \tilde{x} = \sum_{i=1}^{M} z_i u_j + \sum_{i=M+1}^{d} b_i u_i
 \]

 \(b_i\) - constant and fixed

- **How to choose the best set of basis vectors?**
 - We want the subset that gives the best approximation of data \(x\) in the dataset on average (we use least squares fit)

 Error for data entry \(x^n\)
 \[
 x^n - \tilde{x}^n = \sum_{i=M+1}^{d} (z^n_i - b_i) u_j
 \]

 \[
 E_M = \frac{1}{2} \sum_{n=1}^{N} \|x^n - \tilde{x}^n\|^2 = \frac{1}{2} \sum_{n=1}^{N} \sum_{i=M+1}^{d} (z^n_i - b_i)^2
 \]
PCA

• Differentiate the error function with regard to all \(b_i \) and set equal to 0 we get:
 \[
 b_i = \frac{1}{N} \sum_{n=1}^{N} z_i^n = u_i^T \bar{x} \quad \bar{x} = \frac{1}{N} \sum_{n=1}^{N} x^n
 \]

• Then we can rewrite:
 \[
 E_M = \frac{1}{2} \sum_{i=M+1}^{d} u_i^T \Sigma u_i \quad \Sigma = \sum_{n=1}^{N} (x^n - \bar{x})(x^n - \bar{x})^T
 \]

• The error function is optimized when basis vectors satisfy:
 \[
 \Sigma u_i = \lambda_i u_i \quad E_M = \frac{1}{2} \sum_{i=M+1}^{d} \lambda_i
 \]

The best \(M \) basis vectors: discard vectors with \(d-M \) smallest eigenvalues (or keep vectors with \(M \) largest eigenvalues)

Eigenvector \(u_i \) – is called a principal component

CS 2750 Machine Learning

PCA

• Once eigenvectors \(u_i \) with largest eigenvalues are identified, they are used to transform the original \(d \)-dimensional data to \(M \) dimensions

![Diagram of PCA transformation](image)

• To find the “true” dimensionality of the data \(d' \) we can just look at eigenvalues that contribute the most (small eigenvalues are disregarded)

• Problem: PCA is a linear method. The “true” dimensionality can be overestimated. There can be non-linear correlations.
Dimensionality reduction with neural nets

- **PCA** is limited to linear dimensionality reduction
- To do non-linear reductions we can use neural nets
- **Auto-associative network**: a neural network with the same inputs and outputs (\mathbf{x})

 \[
 \mathbf{z} = (z_1, z_2)
 \]

 - The middle layer corresponds to the reduced dimensions

Error criterion:

\[
E = \frac{1}{2} \sum_{n=1}^{N} \sum_{i=1}^{d} \left(y_i^n (x^n) - x^n \right)^2
\]

- Error measure tries to recover the original data through limited number of dimensions in the middle layer
- **Non-linearities** modeled through intermediate layers between the middle layer and input/output
- If no intermediate layers are used the model replicates PCA optimization through learning
Dimensionality reduction through clustering

• **Clustering algorithms**
 – group together “similar” instances in the data sample

• **Dimensionality reduction based on clustering:**
 – Replace a high dimensional data entry with a cluster label

• **Problem:**
 – Deterministic clustering gives only one label per input
 – May not be enough to represent the data for prediction

• **Solutions:**
 – Clustering over subsets of input data
 – Soft clustering (probability of a cluster is used directly)

Dimensionality reduction through clustering

• **Soft clustering** (e.g. mixture of Gaussians) attempts to cover all instances in the data sample with a small number of groups
 – Each group is more or less responsible for a data entry
 (responsibility – a posterior of a group given the data entry)

\[
Mixture \text{ of G. responsibility } h_{ij} = \frac{\pi_i p(x_i \mid y_i = i)}{\sum_{u=1}^{k} \pi_u p(x_i \mid y_i = u)}
\]

• **Dimensionality reduction based on soft clustering**
 – Replace a high dimensional data with the set of group posteriors
 – Feed all posteriors to the learner e.g. linear regressor, classifier
Dimensionality reduction through clustering

- We can use the idea of soft clustering before applying regression/classification learning

Two stage algorithms
- Learn the clustering
- Learn the classification

- Input clustering: \(\mathbf{x} \) (high dimensional)
- Output clustering (Input classifier): \(p(c = i \mid \mathbf{x}) \)
- Output classifier: \(y \)

Example: Networks with Radial Basis Functions (RBFs)

Problem:
- Clustering learns based on \(p(\mathbf{x}) \) (disregards the target)
- Prediction based on \(p(y \mid x) \)

Networks with radial basis functions

- An alternative to **multilayer NN for non-linearities**
- Radial basis functions:
 \[f(x) = w_0 + \sum_{j=1}^{k} w_j \phi_j(x) \]
 - Based on interpolations of prototype points (**means**)
 - Affected by the distance between the \(\mathbf{x} \) and the **mean**
 - Fit the outputs of basis functions through the linear model

- Choice of basis functions:
 \[\phi_j(x) = \exp \left\{ \frac{\| x - \mu_j \|^2}{2\sigma_j^2} \right\} \]

- **Learning:**
 - In practice seem to work OK for up to 10 dimensions
 - For higher dimensions (ridge functions – logistic) combining multiple learners seem to do better job