Evaluation of classifiers
MLPs

Milos Hauskrecht
milos@cs.pitt.edu
5329 Sennott Square

Evaluation

For any data set we use to test the model we can build a confusion matrix:
– Counts of examples with:
 – class label \(\omega_j \) that are classified with a label \(\alpha_i \)

<table>
<thead>
<tr>
<th>predict</th>
<th>(\omega = 1)</th>
<th>(\omega = 0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\alpha = 1)</td>
<td>140</td>
<td>17</td>
</tr>
<tr>
<td>(\alpha = 0)</td>
<td>20</td>
<td>54</td>
</tr>
</tbody>
</table>
Evaluation

For any data set we use to test the model we can build a **confusion matrix**:

<table>
<thead>
<tr>
<th>predict</th>
<th>target</th>
<th>$\omega = 1$</th>
<th>$\omega = 0$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\alpha = 1$</td>
<td>140</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>$\alpha = 0$</td>
<td>20</td>
<td>54</td>
<td></td>
</tr>
</tbody>
</table>

Agreement

$$\text{Error: } \frac{37}{231}$$

$$\text{Accuracy} = 1 - \text{Error} = \frac{194}{231}$$
Evaluation

- **Confusion matrix can be built for multi-way classification:**
 - Counts of examples with:
 - class label \(\omega_j \) that are classified with a label \(\alpha_i \)

<table>
<thead>
<tr>
<th></th>
<th>(\omega = 0)</th>
<th>(\omega = 1)</th>
<th>(\omega = 2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\alpha = 0)</td>
<td>140</td>
<td>20</td>
<td>22</td>
</tr>
<tr>
<td>(\alpha = 1)</td>
<td>17</td>
<td>54</td>
<td>8</td>
</tr>
<tr>
<td>(\alpha = 2)</td>
<td>12</td>
<td>4</td>
<td>76</td>
</tr>
</tbody>
</table>

agreement

Evaluation for binary classification

Entries in the confusion matrix for binary classification have names:

<table>
<thead>
<tr>
<th>predict</th>
<th>(\omega = 1)</th>
<th>(\omega = 0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\alpha = 1)</td>
<td>TP</td>
<td>FP</td>
</tr>
<tr>
<td>(\alpha = 0)</td>
<td>FN</td>
<td>TN</td>
</tr>
</tbody>
</table>

\(TP: \) True positive (hit)
\(FP: \) False positive (false alarm)
\(TN: \) True negative (correct rejection)
\(FN: \) False negative (a miss)
Additional statistics

- **Sensitivity (recall)**
 \[SENS = \frac{TP}{TP + FN} \]

- **Specificity**
 \[SPEC = \frac{TN}{TN + FP} \]

- **Positive predictive value (precision)**
 \[PPT = \frac{TP}{TP + FP} \]

- **Negative predictive value**
 \[NPV = \frac{TN}{TN + FN} \]

Binary classification: additional statistics

- **Confusion matrix**

<table>
<thead>
<tr>
<th>predict</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>140</td>
<td>10</td>
</tr>
<tr>
<td>0</td>
<td>20</td>
<td>180</td>
</tr>
</tbody>
</table>

 \[PPV = \frac{140}{150} \]
 \[NPV = \frac{180}{200} \]

 \[SENS = \frac{140}{160} \]
 \[SPEC = \frac{180}{190} \]

 Row and column quantities:
 - Sensitivity (SENS)
 - Specificity (SPEC)
 - Positive predictive value (PPV)
 - Negative predictive value (NPV)
Binary decisions: ROC

- Probabilities:
 - \(SENS \quad p(x > x^* \mid x \in \omega_2) \)
 - \(SPEC \quad p(x < x^* \mid x \in \omega_1) \)

Receiver Operating Characteristic (ROC)

- ROC curve plots:
 \(SN = p(x > x^* \mid x \in \omega_2) \)
 \(1 - SP = p(x > x^* \mid x \in \omega_1) \)
 for different \(x^* \)
ROC curve

Case 1
Case 2
Case 3

$p(x > x^* | x \in \omega_2) = \cdots$

Receiver operating characteristic

- **ROC**
 - shows the discriminability between the two classes under different decision biases
- **Decision bias**
 - can be changed using different loss function
Zero-one loss function

- **Misclassification error**
 - Based on the zero-one loss function
 - Any misclassified example counts as 1
 - Correctly classified example counts as 0

<table>
<thead>
<tr>
<th></th>
<th>$\omega = 0$</th>
<th>$\omega = 1$</th>
<th>$\omega = 2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\alpha = 0$</td>
<td>140</td>
<td>20</td>
<td>22</td>
</tr>
<tr>
<td>$\alpha = 1$</td>
<td>17</td>
<td>54</td>
<td>8</td>
</tr>
<tr>
<td>$\alpha = 2$</td>
<td>12</td>
<td>4</td>
<td>76</td>
</tr>
</tbody>
</table>

agreement

General loss function

- **Error function based on a more general loss function**
 - Different misclassifications have different weight (loss)
 - α, our choice
 - ω_j, true label
 - $\lambda(\alpha_i \mid \omega_j)$ loss for classification

Example:

<table>
<thead>
<tr>
<th>$\lambda(\alpha_i \mid \omega_j)$</th>
<th>$\omega = 0$</th>
<th>$\omega = 1$</th>
<th>$\omega = 2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\alpha = 0$</td>
<td>0</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>$\alpha = 1$</td>
<td>3</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>$\alpha = 2$</td>
<td>3</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

CS 2750 Machine Learning
Bayesian decision theory

• More general loss function
 – Different misclassifications have different weight (loss)
 \(\lambda (\alpha_i \mid \omega_j) \)

• Expected loss for the classification choice \(\alpha_i \)
 \[R(\alpha_i \mid x) = \sum_j \lambda (\alpha_i \mid \omega_j) P(y = \omega_j \mid x) \]
 – Also called conditional risk

• Decision rule: \(\alpha(x) \)
 – Chooses label (action) according to the input

• The optimal decision rule
 \[\alpha^*(x) = \arg \min_{\alpha_j} \sum_j \lambda (\alpha_i \mid \omega_j) P(y = \omega_j \mid x) \]

How to modify classifiers to handle different loss?

• Discriminative models:
 – Directly optimize the parameters according to the new loss function

• Generative models:
 – Learn probabilities as before
 – Decisions about classes are biased to minimize the empirical loss (as seen above)
Calculating the loss for data

- **Confusion matrix:**
 - Counts of examples with:
 - class label ω_j that are classified with a label α_i

<table>
<thead>
<tr>
<th></th>
<th>$\omega = 0$</th>
<th>$\omega = 1$</th>
<th>$\omega = 2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\alpha = 0$</td>
<td>140</td>
<td>20</td>
<td>22</td>
</tr>
<tr>
<td>$\alpha = 1$</td>
<td>17</td>
<td>54</td>
<td>8</td>
</tr>
<tr>
<td>$\alpha = 2$</td>
<td>12</td>
<td>4</td>
<td>76</td>
</tr>
</tbody>
</table>

\[\text{agreement} \]

- **Loss**

\[
\frac{1}{N} \sum_i \sum_j \lambda (\alpha_i \mid \omega_j) N (\alpha_j \mid \omega_j)
\]

Multilayer neural networks
Linear units

Linear regression

\[f(\mathbf{x}) = w_0 + \sum_{j=1}^{d} w_j x_j \]

Logistic regression

\[f(\mathbf{x}) = p(y = 1 | \mathbf{x}, \mathbf{w}) = g(w_0 + \sum_{j=1}^{d} w_j x_j) \]

On-line gradient update:

\[w_0 \leftarrow w_0 + \alpha (y - f(\mathbf{x})) \]
\[w_j \leftarrow w_j + \alpha (y - f(\mathbf{x})) x_j \]

Limitations of basic linear units

Linear regression

\[f(\mathbf{x}) = w_0 + \sum_{j=1}^{d} w_j x_j \]

Function linear in inputs !!

Logistic regression

\[f(\mathbf{x}) = p(y = 1 | \mathbf{x}, \mathbf{w}) = g(w_0 + \sum_{j=1}^{d} w_j x_j) \]

Linear decision boundary!!
Regression with the quadratic model.

Limitation: linear hyperplane only
- a non-linear surface can be better

Classification with the linear model.

Logistic regression model defines a linear decision boundary
- Example: 2 classes (blue and red points)
Linear decision boundary

- logistic regression model is not optimal, but not that bad

When logistic regression fails?

- Example in which the logistic regression model fails
Limitations of linear units.

- Logistic regression does not work for \textit{parity functions} - no linear decision boundary exists

\[f(x) = w_0 + \sum_{j=1}^{m} w_j \phi_j(x) \]

\[f(x) = g(w_0 + \sum_{j=1}^{m} w_j \phi_j(x)) \]

\[\phi_j(x) \quad - \text{an arbitrary function of } x \]

Solution: a model of a non-linear decision boundary

Extensions of simple linear units

- use \textit{feature (basis) functions} to model \textit{nonlinearities}

Linear regression \hspace{1cm} Logistic regression
\[f(x) = w_0 + \sum_{j=1}^{m} w_j \phi_j(x) \hspace{1cm} f(x) = g(w_0 + \sum_{j=1}^{m} w_j \phi_j(x)) \]

\[\phi_j(x) \quad - \text{an arbitrary function of } x \]
Learning with extended linear units

Feature (basis) functions model **nonlinearities**

Linear regression
\[f(x) = w_0 + \sum_{j=1}^{m} w_j \phi_j(x) \]

Logistic regression
\[f(x) = g\left(w_0 + \sum_{j=1}^{m} w_j \phi_j(x)\right) \]

Important property:
- The same problem as learning of the weights for linear units, the input has changed— but the weights are linear in the new input

Problem: too many weights to learn

Multi-layered neural networks

- Alternative way to introduce nonlinearities to regression/classification models
- **Idea:** Cascade several simple neural models with logistic units. Much like neuron connections.

Multilayer neural network

Also called a **multilayer perceptron (MLP)**
Cascades multiple logistic regression units

Example: (2 layer) classifier with non-linear decision boundaries

\[
\sum_{1} z_1(1) \rightarrow w_{0,1}(2) \rightarrow z_2(1) \rightarrow w_{2,1}(2) \rightarrow p(y = 1 | x)
\]

- Models **non-linearities through logistic regression units**
- Can be applied to both **regression and binary classification problems**

Input layer	Hidden layer	Output layer
\[1, x_1, x_2, \ldots, x_d\] | \[z_1(1), z_2(1), \ldots, z_i(1)\] | \[p(y = 1 | x)\]

regression \[f(x) = f(x, w)\]

classification \[f(x) = p(y = 1 | x, w)\]
Multilayer neural network

- Non-linearities are modeled using multiple hidden logistic regression units (organized in layers)
- The output layer determines whether it is a regression or a binary classification problem

\[f(x) = f(x, w) \]

\[\int f(x) = p(y = 1 | x, w) \]