Evaluation of predictors and learners

Milos Hauskrecht
milos@cs.pitt.edu
5329 Sennott Square, x4-8845

http://www.cs.pitt.edu/~milos/courses/cs2750/

Administration

- Homework 1. due today

- Homework 2 is out. Due next week on Wednesday.
Design cycle

Data

Feature selection

Model selection

Learning

Evaluation

Require some prior knowledge

Design cycle

Data

Feature selection

Model selection

Learning

Evaluation

Require prior knowledge
Evaluation.

- **Evaluation:**
 - Use pristine test data held out from the data set.
 - **Reason:** Overfit can cause the training error to go to zero so it makes sense to evaluate only on the test error.
 - More complex alternative: cross-validation

- **Three evaluation questions:**
 - **Question 1:** How far is the test error from the true error?
 - test error approximates the generalization (true) error
 - **Question 2:** How do we compare two different classifiers? Which one is better than the other?
 - **Question 3:** How do we compare two different learning algorithms? Which one is better than the other?

How far is the test error from the true error?

- **Problem:** we cannot be 100% sure about the goodness of the test error approximation
- **Solution:** statistical methods, confidence intervals
- It is based on:
 - **Central limit theorem:** the sum of a large number of random samples is normally distributed.

Normal distribution: \(N(\mu, \sigma^2) \)
Central limit theorem

• Central limit theorem:
 Let random variables X_1, X_2, \cdots, X_n form a random sample from a distribution with mean μ and variance σ^2, then if the sample n is large, the distribution
 \[
 \sum_{i=1}^{n} X_i \approx N(n\mu, n\sigma^2) \quad \text{or} \quad \frac{1}{n} \sum_{i=1}^{n} X_i \approx N(\mu, \sigma^2 / n)
 \]

Effect of increasing the sample size n on the sample mean:

Transformation to $N(0,1)$

• Sample mean:
 \[
 \overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i \approx N(\mu, \sigma^2 / n)
 \]
 – Is normally distributed around the true mean

• We can transform the sample mean as follows:
 \[
 z = \frac{\overline{X} - \mu}{\sigma / \sqrt{n}} \approx N(0,1)
 \]

• Example:
 \[
 \overline{X} \approx N(5,4) \quad \text{or} \quad z = N(0,1)
 \]
Confidence intervals

• Assume N(0,1)
• We are interested in:
 – Finding the symmetric interval around the mean such that the probability of seeing a sample from it is \(p \)
 – Measuring the distance of end points from 0 in terms of \(\sigma = 1 \)

\[
p = [-z_p, z_p]
\]

Confidence intervals

• Assume N(0,1): \(p \rightarrow [-z_p, z_p] \)
• Values \((p, z_p) \) are tabulated

• Example: \(p = 0.95 \rightarrow z_p = 1.96 \)

\[
p = 0.95
\]

• With confidence 0.95 we see values in interval \([-1.96, 1.96]\)
Confidence intervals

- **Back to case:** \(\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i \approx N(\mu, \sigma^2 / n) \)

- Probability mass under the normal curve for a symmetric interval around the mean is invariant when interval distances are measured in terms of the standard deviation

- **For** \(N(0,1) \)
 \[p = 0.95 \quad \Rightarrow \quad z_p = 1.96 \]

- **For** \(\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i \approx N(\mu, \sigma^2 / n) \)
 \[z = \frac{\bar{X} - \mu}{\sigma / \sqrt{n}} \approx N(0,1) \quad \bar{X} \in [\mu - z_p \frac{\sigma}{\sqrt{n}}, \mu + z_p \frac{\sigma}{\sqrt{n}}] \]

 \[p = 0.95 \quad \Rightarrow \quad \bar{X} \in [\mu - 1.96(\sigma / \sqrt{n}), \mu + 1.96(\sigma / \sqrt{n})] \]

 \[\Rightarrow \mu \in [\bar{X} - 1.96(\sigma / \sqrt{n}), \bar{X} + 1.96(\sigma / \sqrt{n})] \]

Confidence interval

- **Problem:** But typically the variance is not known

- **Solution:** estimate the variance from the sample
 \[s_n = \sqrt{\frac{\sum_{i=1}^{n} (X_i - \bar{X})^2}{n-1}} \]

- Assume the sample mean falls into the interval centered at the mean:
 \[\bar{X} \in [\mu - t_p \frac{s_n}{\sqrt{n}}, \mu + t_p \frac{s_n}{\sqrt{n}}] \]

- Or equivalently that the mean falls into the interval centered around the sample mean:
 \[\mu \in [\bar{X} - t_p \frac{s_n}{\sqrt{n}}, \bar{X} + t_p \frac{s_n}{\sqrt{n}}] \]

- **This happens with some probability** \(p \) **that depends on** \(t_p \)
Confidence interval

- Let: \(t = \frac{\bar{X} - \mu}{s_n} \sqrt{n} \)

- The difference from the known variance case:
 - \(t \) is not normally distributed, instead it follows a **Student distribution** (t distribution)
 - Student distribution has one additional parameter: the **degree of freedom**
 - For \(s_n = \sqrt{\frac{\sum_{i=1}^{n} (X_i - \bar{X})^2}{n-1}} \) \(t \) has \(n-1 \) degrees of freedom

\[t(n-1) = \frac{\bar{X} - \mu}{s_n} \sqrt{n} \approx t \text{ distribution (n-1)} \]

Student distribution

- Student distribution versus normal N(0,1)
Student distribution

- Student distribution with \(k \) degrees of freedom
 - For \(k \to \infty \) it approaches \(N(0,1) \)

So how different the test error can be?

- Select confidence level (probability) (e.g. \(p=0.95 \))
- Compute interval into which the sample mean falls with that confidence:
 - For unknown mean and known variance
 \[
 \bar{X} \in \left[\mu - z_p \frac{\sigma}{\sqrt{n}}, \mu + z_p \frac{\sigma}{\sqrt{n}} \right]\]
 \[
 \mu \in \left[\bar{X} - z_p \frac{\sigma}{\sqrt{n}}, \bar{X} + z_p \frac{\sigma}{\sqrt{n}} \right]
 \]
 E.g. for \(p=0.95 \) \(\mu \in [\bar{X} - 1.96(\sigma / \sqrt{n}), \bar{X} + 1.96(\sigma / \sqrt{n})] \)
 - For unknown mean and unknown variance
 \[
 \bar{X} \in \left[\mu - t_p (n-1) \frac{s}{\sqrt{n}}, \mu + t_p (n-1) \frac{s}{\sqrt{n}} \right]\]
 \[
 \mu \in \left[\bar{X} - t_p (n-1) \frac{s}{\sqrt{n}}, \bar{X} + t_p (n-1) \frac{s}{\sqrt{n}} \right]\]
 E.g. for \(p=0.95 \) and \(n=30 \)
 \[
 \mu \in [\bar{X} - 2.045 \frac{s}{\sqrt{n}}, \bar{X} + 2.045 \frac{s}{\sqrt{n}}]
 \]
Comparison of two predictors

Predictor 1 uses function $f_1(x)$ to predict ys
Predictor 2 uses function $f_2(x)$ to predict ys

- Test data are used to approximate the true errors

$Error_1 = \frac{1}{n} \sum_{i=1}^{n} (y_i - f_1(x_i))^2$ \hspace{1cm} Test errors

$Error_2 = \frac{1}{n} \sum_{i=1}^{n} (y_i - f_2(x_i))^2$

- Assume that: the sample size n is sufficiently large
- Assume that we observed: $Error_1^0 > Error_2^0$
or that $\Delta E^0 = Error_1^0 - Error_2^0 > 0$
- Question: How sure are we that the predictor 2 is better than
the predictor 1 in terms of true errors?

Comparison of two predictors

- True errors:

 $Error_1^{True} = E_{(x,y)}[(y - f_1(x))^2]$

 $Error_2^{True} = E_{(x,y)}[(y - f_2(x))^2]$

- Predictor 2 is better than Predictor 1 if: $Error_1^{True} > Error_2^{True}$
or $\mu_{diff} = E_{(x,y)}[(y - f_1(x))^2 - (y - f_2(x))^2] > 0$

- Problem: we do not know the true mean error difference
- But we can approximate the last quantity with the sample

 $\Delta E = Error_1 - Error_2$

 $\Delta Error = \frac{1}{n} \sum_{i=1}^{n} [(y_i - f_1(x_i))^2 - (y_i - f_2(x_i))^2]$ \hspace{1cm} Paired squared differences for test sample
Comparison of two predictors

True error differences

$$\mu_{\text{diff}} = E_{(x,y)}[(y - f_1(x))^2 - (y - f_2(x))^2]$$

Error differences based on the sample of size \(n\)

$$\Delta E = \frac{1}{n} \sum_{i=1}^{n} [(y_i - f_1(x_i))^2 - (y_i - f_2(x_i))^2]$$

Assume: \(X\) is a random variable, such that

$$X_i \approx (y_i - f_1(x_i))^2 - (y_i - f_2(x_i))^2$$

But then

$$\Delta E = \bar{X} = \frac{1}{n} \sum_{i=1}^{n} [(y_i - f_1(x_i))^2 - (y_i - f_2(x_i))^2]$$

Central limit result testifies about the difference:

$$\Delta E = \bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i \approx N(\mu, \sigma^2 / n) \quad X_i \text{ - is a random variable}$$

Comparison of two predictors

- Assume the variance \(\sigma_{\text{diff}}\) is known
- Then we can derive a constant \(z_p\) such that with a probability \(p\) our estimate falls into:

$$\Delta E = \bar{X} \in [\mu_{\text{diff}} - z_p \frac{\sigma_{\text{diff}}}{\sqrt{n}}, \mu + z_p \frac{\sigma_{\text{diff}}}{\sqrt{n}}]$$

- But we have a different objective here
Comparison of two predictors

- Our objective is to determine what is the probability that \(\mu_{\text{diff}} > 0 \) holds given an observed \(\Delta E^0 > 0 \)
- An alternative formulation: the probability that we can reject \(\mu_{\text{diff}} \leq 0 \) given \(\Delta E^0 > 0 \)

This is a classic hypothesis testing problem in statistics

- Typical formulation:
 - \(H_0 \) (null hypothesis) \(\mu_{\text{diff}} = 0 \)
 - \(H_1 \) (alternative hypothesis) \(\mu_{\text{diff}} \neq 0 \)
- Question: can we reject the null hypothesis with some confidence given the observed sample mean \(\Delta E^0 \) of size \(n \)
- The hypothesis here is undirectional and standard two-sided z-test or t-test can be applied to determine the confidence level for reject

Our case is different:

- \(H_0 \) (null hypothesis) \(\mu_{\text{diff}} \leq 0 \)
- \(H_1 \) (alternative hypothesis) \(\mu_{\text{diff}} > 0 \)

- That is, we want to reject the case when the true mean of the score differences is \(\mu_{\text{diff}} \leq 0 \) based on \(\Delta E^0 > 0 \) with some confidence level.
- This is a directional hypothesis

- Test methods:
 - One-sided z-test (for the known variance case)
 - One-sided t-test (for the unknown variance case)
Comparison of two predictors

- Support for an alternative hypothesis
 \[P(\mu_{\text{diff}} > 0) = P(\Delta E < \mu_{\text{diff}} + \Delta E^0) \]

- From the central limit:
 \[P(\Delta E < \mu_{\text{diff}} + z^1_p \frac{\sigma_{\text{diff}}}{\sqrt{n}}) = p^1 \]

- Computation:
 \[\Delta E^0 = z^1_p \frac{\sigma_{\text{diff}}}{\sqrt{n}} \Rightarrow z^1_p = \Delta E^0 \frac{\sqrt{n}}{\sigma_{\text{diff}}} \Rightarrow p^1 \]

Example

- Example: \(\Delta \text{Error}^0 = 0.1, (\sigma_{\text{diff}} / \sqrt{n}) = 0.061 \)
 \[P(\mu_{\text{diff}} > 0) = ? \]

- Then:
 \[\Delta \text{Error}^0 = z^1_p \frac{\sigma_{\text{diff}}}{\sqrt{n}} \Rightarrow z^1_p = \Delta \text{Error}^0 \frac{\sqrt{n}}{\sigma_{\text{diff}}} \approx 1.64 \]

- Distance of 1.64 standard deviations corresponds to one sided \(p \) value of 0.95
 \[P(\mu_{\text{diff}} > 0) = 0.95 \]
Comparison of two predictors

- **Case:** unknown standard deviation \(\sigma_{\text{diff}} \)
- **Solution:** use the estimate of the standard deviation

\[
\hat{\sigma}_{\text{diff}} = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (X_i - \bar{X})^2}
\]

- Estimate of the standard deviation

\[
t(n-1) = \frac{\bar{X} - \mu_{\text{diff}}}{\hat{\sigma}_{\text{diff}}} \sqrt{n} \approx t \text{ distribution}
\]

- **Compute the probability of a one sided interval:**

\[
P(\bar{X} < \mu_{\text{diff}} + t_p (n-1) \frac{\hat{\sigma}_{\text{diff}}}{\sqrt{n}}) = p^1
\]

\[
\Delta\text{Error}^0 = t_p (n-1) \frac{\hat{\sigma}_{\text{diff}}}{\sqrt{n}} \quad \Rightarrow \quad t_p (n-1) = \Delta\text{Error}^0 \frac{\sqrt{n}}{\hat{\sigma}_{\text{diff}}} \quad \Rightarrow \quad p^1
\]

Comparison of two algorithms

Comparison of two learning algorithms L1 & L2 can be a much harder task, especially when data are small.

- **Problem:** Learning can be performed on many different training sets
 - One training set may not fit well one algorithm, but on average it can perform better.

- **Optimal evaluation settings:**
 - draw a sequence of \(k \) independent training and testing sets.
 - Evaluate & compare methods based on average of errors for every train-test cycle

- **Practical evaluation settings:**
 - we do not have the luxury of independent samples
 - use surrogate sampling with dependencies: cross-validation, re-sampling