Ensamble methods. Mixtures of experts

Mixture of experts model

• **Ensamble methods:**
 – Use a combination of simpler learners to improve predictions
• **Mixture of expert model:**
 – Covers different input regions with different learners
 – A “soft” switching between learners

• **Mixture of experts**
 Expert = learner

Milos Hauskrecht
milos@cs.pitt.edu
5329 Sennott Square
Mixture of experts model

- **Gating network**: decides what expert to use
 - $g_1, g_2, ..., g_k$ - gating functions

```
Gating
network
```

Learning mixture of experts

- **Learning consists of two tasks**:
 - Learn the parameters of individual expert networks
 - Learn the parameters of the gating network
 - Decides where to make a split
- **Assume**: gating functions give probabilities
 - $0 \leq g_1(x), g_2(x), ..., g_k(x) \leq 1$
 - $\sum_{u=1}^{k} g_u(x) = 1$

- Based on the probability we partition the space
 - partitions belongs to different experts
- How to model the gating network?
 - **A multiway classifier model**:
 - softmax model
 - a generative classifier model
Learning mixture of experts

- Assume we have a set of linear experts
 \[\mu_i = \theta_i^T x \] (Note: bias terms are hidden in x)
- Assume a softmax gating network
 \[g_i(x) = \frac{\exp(\eta_i^T x)}{\sum_{u=1}^{k} \exp(\eta_u^T x)} \approx p(\omega_i \mid x, \eta) \]

• Likelihood of \(y \) (assumed that errors for different experts are normally distributed with the same variance)
 \[
P(y \mid x, \Theta, \eta) = \sum_{i=1}^{k} P(\omega_i \mid x, \eta) p(y \mid x, \omega_i, \Theta)
 = \sum_{i=1}^{k} \left[\frac{\exp(\eta_i^T x)}{\sum_{j=1}^{k} \exp(\eta_j^T x)} \right] \left[\frac{1}{\sqrt{2\pi}\sigma} \exp \left(-\frac{\|y - \mu_i\|^2}{2\sigma^2} \right) \right]
\]

Gradient learning.

On-line update rule for parameters \(\Theta_i \) of expert \(i \)
- If we know the expert that is responsible for \(x \)
 \[\theta_{y} \leftarrow \theta_{y} + \alpha_{y} (y - \mu_i) x_j \]
- If we do not know the expert
 \[\theta_{y} \leftarrow \theta_{y} + \alpha_{y} h_{i}(y - \mu_{i}) x_j \]

\(h_{i} \) - responsibility of the \(i \)th expert = a kind of posterior

\[
h_{i}(x, y) = \frac{g_{i}(x) p(y \mid x, \omega_{i}, \theta)}{\sum_{u=1}^{k} g_{u}(x) p(y \mid x, \omega_{u}, \theta)} = \frac{g_{i}(x) \exp \left(-1/2\|y - \mu_{i}\|^2 \right)}{\sum_{u=1}^{k} g_{u}(x) \exp \left(-1/2\|y - \mu_{u}\|^2 \right)}
\]

\(g_{i}(x) \) - a prior \(\exp(...) \) - a likelihood

Learning mixtures of experts

Gradient methods

- **On-line learning of gating network parameters** η_i

 $$\eta_{ij} \leftarrow \eta_{ij} + \beta_{ij} (h_i(x, y) - g_j(x)) x_j$$

- The learning with conditioned mixtures can be extended to learning of parameters of an **arbitrary expert network**
 - e.g. logistic regression, multilayer neural network

 $$\theta_{ij} \leftarrow \theta_{ij} + \beta_{ij} \frac{\partial l}{\partial \theta_{ij}}$$

 $$\frac{\partial l}{\partial \theta_{ij}} = \frac{\partial l}{\partial \mu_i} \frac{\partial \mu_i}{\partial \theta_{ij}} = h_i \frac{\partial \mu_i}{\partial \theta_{ij}}$$

Learning mixture of experts

EM algorithm offers an alternative way to learn the mixture

Algorithm:

Initialize parameters Θ

Repeat

Set $\Theta' = \Theta$

1. **Expectation step**

 $$Q(\Theta \mid \Theta') = E_{H \mid X,Y,\Theta} \log P(H, Y \mid X, \Theta, \xi)$$

2. **Maximization step**

 $$\Theta = \arg \max_{\Theta} Q(\Theta \mid \Theta')$$

 until no or small improvement in $Q(\Theta \mid \Theta')$

 - Hidden variables are identities of expert networks responsible for (x,y) data points
Learning mixture of experts with EM

• Assume we have a set of linear experts
 \[\mu_i = \theta_i^T x \]
• Assume a softmax gating network
 \[g_i(x) = P(\omega_i | x, \eta) \]
• Q function to optimize
 \[Q(\Theta | \Theta') = E_{H,X,Y,\Theta'} \log P(H,Y | X, \Theta, \xi) \]
• Assume:
 – \(l \) indexes different data points
 – \(\delta_i^l \) an indicator variable for the data point \(l \) to be covered by an expert \(i \)
 \[Q(\Theta | \Theta') = \sum_l \sum_i E(\delta_i^l | x^l, y^l, \Theta', \eta') \log(P(y^l, \omega_i | x^l, \Theta, \eta)) \]
Learning mixture of experts with EM

- The maximization step boils down to the problem that is equivalent to the problem of finding the ML estimates of the parameters of the expert and gating networks

\[Q(\Theta | \Theta') = \sum_i \sum_l h_i^l(x_i, y_i) \log(P(y_i, \omega_i | x_i, \Theta, \eta)) \]

\[\log(P(y_i, \omega_i | x_i, \Theta, \eta)) = \log P(y_i | \omega_i, x_i, \Theta) + \log P(\omega_i | x_i, \eta) \]

- Note that any optimization technique can be applied in this step

Learning mixture of experts

- Note that we can use different expert and gating models
- For example:
 - Experts: logistic regression models
 \[y_i = 1/(1 + \exp(-\theta_i^T x)) \]
 - Gating network: a generative latent variable model

 \[g_i(x) = P(\omega_i | x, \eta) \]

- Likelihood of \(y \):
 \[P(y | x, \Theta, \eta) = \sum_{u=1}^{k} P(\omega_u | x, \eta) p(y | x, \omega_u, \Theta) \]
Hierarchical mixture of experts

- **Mixture of experts**: define a probabilistic split
- The idea can be extended to a **hierarchy of experts** (a kind of a probabilistic decision tree)

\[\omega_u \]
\[\omega_{uv} \]

Switching (gating) indicator

\[x \]
\[E1 \]
\[E2 \]
\[E3 \]
\[E4 \]
\[y \]

Hierarchical mixture model

An output is conditioned (gated) on multiple mixture levels

\[P(y | x, \Theta) = \sum_u P(\omega_u | x, \eta) \sum_v P(\omega_{uv} | x, \omega_u, \xi_v) \sum_s P(\omega_{uv..s} | x, \omega_u, \omega_{uv}, \ldots) P(y | x, \omega_u, \omega_{uv}, \omega_{uv..s}, \Theta) \]

- **Define** \(\Omega_{uv..s} = \{\omega_u, \omega_{uv}, \ldots, \omega_{uv..s}\} \)

\[P(\Omega_{uv..s} | x, \Theta) = P(\omega_u | x) P(\omega_{uv} | x, \omega_u) \ldots P(\omega_{uv..s} | x, \omega_u, \omega_{uv}, \ldots) \]

- **Then**

\[P(y | x, \Theta) = \sum_u \sum_v \ldots \sum_s P(\Omega_{uv..s} | x, \Theta) P(y | x, \Omega_{uv..s}, \Theta) \]

- Mixture model is a kind of soft decision tree model
 - with a fixed tree structure!!
Hierarchical mixture of experts

• Multiple levels of probabilistic gating functions
 \[g_u(x) = P(\omega_u | x, \Theta) \quad g_{vju}(x) = P(\omega_{uv} | x, \omega_u, \Theta) \]

• Multiple levels of responsibilities
 \[h_u(x, y) = P(\omega_u | x, y, \Theta) \quad h_{vju}(x, y) = P(\omega_{uv} | x, y, \omega_u, \Theta) \]

• How they are related?

\[
P(\omega_{uv} | x, y, \omega_u, \Theta) = \frac{P(y | x, \omega_u, \omega_{uv}, \Theta) P(\omega_{uv} | x, \omega_u, \Theta)}{\sum_u P(y | x, \omega_u, \omega_{uv}, \Theta) P(\omega_{uv} | x, \omega_u, \Theta)} = \sum_y P(y, \omega_{uv} | x, \omega_u, \Theta) = P(y | x, \omega_u, \Theta)
\]

Hierarchical mixture of experts

• Responsibility for the top layer
 \[h_u(x, y) = P(\omega_u | x, y, \Theta) = \frac{P(y | x, \omega_u, \Theta) P(\omega_u | x, \Theta)}{\sum_u P(y | x, \omega_u, \Theta) P(\omega_u | x, \Theta)} \]

• But \(P(y | x, \omega_u, \Theta) \) is computed while computing
 \[h_{vju}(x, y) = P(\omega_{uv} | x, y, \omega_u, \Theta) \]

• General algorithm:
 – Downward sweep; calculate
 \[g_{vju}(x) = P(\omega_{uv} | x, \omega_u, \Theta) \]
 – Upward sweep; calculate
 \[h_u(x, y) = P(\omega_u | x, y, \Theta) \]
On-line learning

- Assume linear experts \(\mu_{uv} = \theta_{uv}^T x \)
- Gradients (vector form):
 \[
 \frac{\partial l}{\partial \theta_{uv}} = h_u h_{v|u} (y - \mu_{uv}) x
 \]
 \[
 \frac{\partial l}{\partial \eta} = (h_u - g_u) x \quad \text{Top level (root) node}
 \]
 \[
 \frac{\partial l}{\partial \xi} = h_u (h_{v|u} - g_{v|u}) x \quad \text{Second level node}
 \]
- Again: can it can be extended to different expert networks