Ensamble methods.
Mixtures of experts

Mixture of experts model

- Ensemble methods:
 - Use a combination of simpler learners to improve predictions
- Mixture of expert model:
 - Covers different input regions with different learners
 - A “soft” switching between learners

· Mixture of experts
 Expert = learner
Mixture of experts model

• **Gating network**: decides what expert to use

 \[g_1, g_2, \ldots, g_k \] - gating functions

Learning mixture of experts

• **Learning consists of two tasks:**
 – Learn the parameters of individual expert networks
 – Learn the parameters of the gating network
 • Decides where to make a split
 • **Assume**: gating functions give probabilities

 \[0 \leq g_1(x), g_2(x), \ldots, g_k(x) \leq 1 \]
 \[\sum_{u=1}^{k} g_u(x) = 1 \]

 • Based on the probability we partition the space
 – partitions belongs to different experts
 • How to model the gating network?
 – **A multiway classifier model**:
 • softmax model
 • a generative classifier model
Learning mixture of experts

- Assume we have a **set of linear experts**
 \[\mu_i = \theta_i^T x \]
 (Note: bias terms are hidden in x)
- Assume a **softmax gating network**
 \[g_i(x) = \frac{\exp(\eta_i^T x)}{\sum_{u=1}^{k} \exp(\eta_u^T x)} \approx p(\omega_i \mid x, \eta) \]
- Likelihood of y (assumed that errors for different experts are normally distributed with the same variance)
 \[
P(y \mid x, \Theta, \eta) = \sum_{i=1}^{k} P(\omega_i \mid x, \eta) p(y \mid x, \omega_i, \Theta) = \sum_{i=1}^{k} \left[\frac{\exp(\eta_i^T x)}{\sum_{j=1}^{k} \exp(\eta_j^T x)} \right] \left[\frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{\|y - \mu_i\|^2}{2\sigma^2} \right) \right]
\]

Learning mixture of experts

Gradient learning.

On-line update rule for parameters \(\Theta_i \) of expert \(i \)
- If we know the expert that is responsible for \(x \)
 \[\theta_{y} \leftarrow \theta_{y} + \alpha_{y} (y - \mu_{i}) x_j \]
- If we do not know the expert
 \[\theta_{y} \leftarrow \theta_{y} + \alpha_{y} h_i (y - \mu_{i}) x_j \]

\(h_i \) - **responsibility of the \(i \)th expert** = a kind of posterior

\[
h_i(x, y) = \frac{g_i(x) p(y \mid x, \omega_i, \Theta)}{\sum_{u=1}^{k} g_u(x) p(y \mid x, \omega_u, \Theta)} = \frac{g_i(x) \exp\left(-\frac{1}{2\sigma^2} \|y - \mu_i\|^2 \right)}{\sum_{u=1}^{k} g_u(x) \exp\left(-\frac{1}{2\sigma^2} \|y - \mu_u\|^2 \right)}
\]

\(g_i(x) \) - a prior \(\exp(...) \) - a likelihood
Learning mixtures of experts

Gradient methods

- **On-line learning of gating network parameters** η_j

 $$\eta_j \leftarrow \eta_j + \beta_j (h_j(x,y) - g_j(x)) x_j$$

- The learning with conditioned mixtures can be extended to learning of parameters of an arbitrary expert network – e.g. logistic regression, multilayer neural network

 $$\theta_j \leftarrow \theta_j + \beta_j \frac{\partial l}{\partial \theta_j}$$

 $$\frac{\partial l}{\partial \theta_j} = \frac{\partial l}{\partial \mu_j} \frac{\partial \mu_j}{\partial \theta_j} = h_j \frac{\partial \mu_j}{\partial \theta_j}$$

Learning mixture of experts

EM algorithm offers an alternative way to learn the mixture

Algorithm:

1. **Expectation step**

 $$Q(\Theta | \Theta') = E_{H \mid X,Y,\Theta} \log P(H, Y \mid X, \Theta, \zeta)$$

2. **Maximization step**

 $$\Theta = \arg \max_{\Theta} Q(\Theta | \Theta')$$

 until no or small improvement in $Q(\Theta | \Theta')$

 - Hidden variables are identities of expert networks responsible for (x,y) data points
Learning mixture of experts with EM

- Assume we have a **set of linear experts**
 \[\mu_i = \theta_i^T x \]
- Assume a **softmax gating network**
 \[g_i(x) = P(\omega_i \mid x, \eta) \]
- **Q function to optimize**
 \[Q(\Theta \mid \Theta') = E_{H \mid X,Y,\Theta'} \log P(H, Y \mid X, \Theta, \xi) \]
- **Assume:**
 - \(l \) indexes different data points
 - \(\delta_i^l \) an indicator variable for the data point \(l \) to be covered by an expert \(i \)
 \[Q(\Theta \mid \Theta') = \sum_l \sum_i E(\delta_i^l \mid x', y', \Theta', \eta') \log(P(y', \omega_i \mid x', \Theta, \eta)) \]

Learning mixture of experts with EM

- **Assume:**
 - \(l \) indexes different data points
 - \(\delta_i^l \) an indicator variable for data point \(l \) and expert \(i \)
 \[Q(\Theta \mid \Theta') = \sum_l \sum_i E(\delta_i^l \mid x', y', \Theta', \eta') \log(P(y', \omega_i \mid x', \Theta, \eta)) \]
 \[E(\delta_i^l \mid x', y', \Theta', \eta') = h_i^l(x', y') = \frac{g_i(x') p(y \mid x', \omega_i, \theta')}{\sum_{u=1}^k g_u(x') p(y \mid x', \omega_u, \theta')} \]
 Responsibility of the expert \(i \) for \((x,y) \)
 \[Q(\Theta \mid \Theta') = \sum_l \sum_i h_i^l(x', y') \log(P(y', \omega_i \mid x', \Theta, \eta)) \]
Learning mixture of experts with EM

- The maximization step boils down to the problem that is equivalent to the problem of finding the ML estimates of the parameters of the expert and gating networks.

\[
Q(\Theta \mid \Theta') = \sum_i \sum_l h_i^l(x^l, y^l) \log(P(y^l, \omega \mid x^l, \Theta, \eta))
\]

\[
\log(P(y^l, \omega \mid x^l, \Theta, \eta)) = \log P(y^l \mid \omega, x^l, \Theta) + \log P(\omega \mid x^l, \eta)
\]

- Expert network \(i\) (Linear regression)
- Gating network (Softmax)

- Note that any optimization technique can be applied in this step.

Hierarchical mixture of experts

- **Mixture of experts**: define a probabilistic split
- The idea can be extended to a **hierarchy of experts** (a kind of a probabilistic decision tree)
Hierarchical mixture model

An output is conditioned (gated) on multiple mixture levels

\[P(y \mid x, \Theta) = \sum_u P(\omega_u \mid x, \eta) \sum_v \prod_l P(\omega_{uv} \mid x, \omega_u, \xi) \times \prod_l P(\omega_{uv, l} \mid x, \omega_u, \omega_v, \ldots) \times \prod_l P(y \mid x, \omega_u, \omega_v, \ldots, \Theta) \]

- Define \(\Omega_{uv \ldots} = \{\omega_u, \omega_{uv}, \ldots, \omega_{uv \ldots} \} \)

\[P(\Omega_{uv \ldots} \mid x, \Theta) = P(\omega_u \mid x)P(\omega_{uv} \mid x, \omega_u) \cdots P(\omega_{uv \ldots} \mid x, \omega_u, \omega_{uv}, \ldots) \]

- Then

\[P(y \mid x, \Theta) = \sum_u \sum_v \cdots \sum_l P(\Omega_{uv \ldots} \mid x, \Theta)P(y \mid x, \Omega_{uv \ldots}, \Theta) \]

Hierarchical mixture of experts

- Multiple levels of probabilistic gating functions

\[g_u(x) = P(\omega_u \mid x, \Theta) \quad \quad g_{uv}(x) = P(\omega_{uv} \mid x, \omega_u, \Theta) \]

- Multiple levels of responsibilities

\[h_u(x, y) = P(\omega_u \mid x, y, \Theta) \quad \quad h_{uv}(x, y) = P(\omega_{uv} \mid x, y, \omega_u, \Theta) \]

- How they are related?

\[P(\omega_{uv} \mid x, y, \omega_u, \Theta) = \frac{\sum_y P(y \mid x, \omega_u, \omega_{uv}, \Theta)P(\omega_{uv} \mid x, \omega_u, \Theta)}{\sum_y P(y \mid x, \omega_u, \omega_{uv}, \Theta)P(\omega_{uv} \mid x, \omega_u, \Theta)} \]

\[\sum_y P(y, \omega_{uv} \mid x, \omega_u, \Theta) = P(y \mid x, \omega_u, \Theta) \]
Hierarchical mixture of experts

- Responsibility for the top layer

\[h_u(x, y) = P(\omega_u | x, y, \Theta) = \frac{P(y | x, \omega_u, \Theta) P(\omega_y | x, \Theta)}{\sum_u P(y | x, \omega_u, \Theta) P(\omega_y | x, \Theta)} \]

- But \(P(y | x, \omega_u, \Theta) \) is computed while computing

\[h_{vju}(x, y) = P(\omega_{uv} | x, y, \omega_u, \Theta) \]

- General algorithm:
 - Downward sweep; calculate

\[g_{vju}(x) = P(\omega_{uv} | x, \omega_u, \Theta) \]

 - Upward sweep; calculate

\[h_u(x, y) = P(\omega_u | x, y, \Theta) \]

On-line learning

- Assume linear experts \(\mu_{uv} = \theta_{uv}^T x \)

- Gradients (vector form):

\[\frac{\partial l}{\partial \theta_{uv}} = h_u h_{vju}(y - \mu_{uv})x \]

\[\frac{\partial l}{\partial \eta} = (h_u - g_u)x \quad \text{Top level (root node)} \]

\[\frac{\partial l}{\partial \xi} = h_u (h_{vju} - g_{vju})x \quad \text{Second level node} \]

- Again: can it can be extended to different expert networks
Ensemble methods:
Bagging.

Milos Hauskrecht
milos@cs.pitt.edu
5329 Sennott Square

Ensemble methods

• Mixture of experts
 – Different ‘base’ models (classifiers, regressors) cover different parts of the input space
• Alternative idea:
 – Train several ‘base’ models on the complete input space, but on slightly different train sets
 – Combine their decision to produce the final result
 • Sometimes called Committee machines
• Goal: Improve the accuracy of the ‘base’ model
• Methods:
 – Bagging
 – Boosting
 – Stacking (not covered)
Bagging (Bootstrap Aggregating)

- **Given:**
 - Training set of N examples
 - A class of learning models (e.g. decision trees, neural networks, …)
- **Goal:**
 - Improve the accuracy of one model by using multiple copies of it
- **Motivation:**
 - **Recall:** Average of misclassification errors on different data splits gives a better estimate of the predictive ability of a learning method
 - Train multiple models on different samples and average their predictions

Bagging algorithm

- **Training**
 - In each iteration $t, t=1,…,T$
 - Randomly sample with replacement N samples from the training set
 - Train a chosen “base model” (e.g. neural network, decision tree) on the samples
- **Test**
 - For each test example
 - Start all trained base models
 - Predict by combining results of all T trained models:
 - **Regression:** averaging
 - **Classification:** a majority vote
When Bagging Works

- **Expected error** = **Bias + Variance**
 - *Expected error* is the expected discrepancy between the estimated and true function
 \[E \left[\left(\hat{f}(X) - E[f(X)] \right)^2 \right] \]
 - *Bias* is squared discrepancy between averaged estimated and true function
 \[\left(E[\hat{f}(X)] - E[f(X)] \right)^2 \]
 - *Variance* is expected divergence of the estimated function vs. its average value
 \[E\left[\left(\hat{f}(X) - E[\hat{f}(X)] \right)^2 \right] \]
When Bagging works?
Under-fitting and over-fitting

- **Under-fitting:**
 - High bias (models are not accurate)
 - Small variance (smaller influence of examples in the training set)

- **Over-fitting:**
 - Small bias (models flexible enough to fit well to training data)
 - Large variance (models depend very much on the training set)

Averaging decreases variance

- **Example**
 - Assume we measure a random variable \(x \) with a \(N(\mu, \sigma^2) \) distribution
 - If only one measurement \(x_1 \) is done,
 - The expected mean of the measurement is \(\mu \)
 - Variance is \(\text{Var}(x_1) = \sigma^2 \)
 - If random variable \(x \) is measured \(K \) times \((x_1, x_2, \ldots x_K) \) and the value is estimated as: \((x_1 + x_2 + \ldots + x_K) / K \),
 - Mean of the estimate is still \(\mu \)
 - But, variance is smaller:
 - \(\frac{\text{Var}(x_1) + \ldots + \text{Var}(x_K)}{K^2} = K \sigma^2 / K^2 = \sigma^2 / K \)
 - Observe: **Bagging is a kind of averaging!**
When Bagging works

• Main property of Bagging (proof omitted)
 – Bagging decreases variance of the base model without changing the bias!!!
 – Why? averaging!
• Bagging typically helps
 – When applied with an over-fitted base model
 • High dependency on actual training data
• It does not help much
 – High bias. When the base model is robust to the changes in the training data (due to sampling)