Designing a learning system

Design of a learning system (first view)

Data

Model selection

Learning

Application or Testing

Milos Hauskrecht
milos@cs.pitt.edu
5329 Sennott Square, x4-8845

http://www.cs.pitt.edu/~milos/courses/cs2750/
Design of a learning system.

1. Data: \(D = \{d_1, d_2, \ldots, d_n\} \)

2. Model selection:
 - Select a model or a set of models (with parameters)
 E.g. \(y = ax + b + \epsilon \quad \epsilon = N(0, \sigma) \)
 - Select the error function to be optimized
 E.g. \(\frac{1}{n} \sum_{i=1}^{n} (y_i - f(x_i))^2 \)

3. Learning:
 - Find the set of parameters optimizing the error function
 – The model and parameters with the smallest error

4. Application (Evaluation):
 - Apply the learned model
 – E.g. predict \(y_s \) for new inputs \(x \) using learned \(f(x) \)
Design cycle

Data

Feature selection

Model selection

Learning

Evaluation

Require prior knowledge

Data

Data may need a lot of:
- Cleaning
- Preprocessing (conversions)

Cleaning:
- Get rid of errors, noise,
- Removal of redundancies

Preprocessing:
- Renaming
- Rescaling (normalization)
- Discretizations
- Abstraction
- Aggregation
- New attributes
Data preprocessing

- **Renaming** (relabeling) categorical values to numbers
 - dangerous in conjunction with some learning methods
 - numbers will impose an order that is not warranted
- **Rescaling (normalization):** continuous values transformed to some range, typically [-1, 1] or [0,1].
- **Discretizations (binning):** continuous values to a finite set of discrete values
- **Abstraction:** merge together categorical values
- **Aggregation:** summary or aggregation operations, such minimum value, maximum value etc.
- **New attributes:**
 - example: obesity-factor = weight/height

Data biases

- **Watch out for data biases:**
 - Try to understand the data source
 - It is very easy to derive “unexpected” results when data used for analysis and learning are biased (pre-selected)
 - Results (conclusions) derived for pre-selected data do not hold in general !!!!
Data biases

Example 1: Risks in pregnancy study
- Sponsored by DARPA at military hospitals
- Study of a large sample of pregnant woman
- Conclusion: the factor with the largest impact on reducing risks during pregnancy (statistically significant) is a pregnant woman being single
- Single woman -> the smallest risk
- What is wrong?

Data

Example 2: Stock market trading (example by Andrew Lo)
- Data on stock performances of companies traded on stock market over past 25 year
- Investment goal: pick a stock to hold long term
- Proposed strategy: invest in a company stock with an IPO corresponding to a Carmichael number
- Evaluation result: excellent return over 25 years
- Where the magic comes from?
Feature selection

- **The size (dimensionality) of a sample** can be enormous
 \[x_i = (x_i^1, x_i^2, \ldots, x_i^d) \quad d \quad \text{very large} \]
- **Example: document classification**
 - 10,000 different words
 - Inputs: counts of occurrences of different words
 - Too many parameters to learn (not enough samples to justify the estimates the parameters of the model)
- **Dimensionality reduction: replace inputs with features**
 - *Extract relevant inputs* (e.g. mutual information measure)
 - *PCA* – principal component analysis
 - *Group (cluster) similar words* (uses a similarity measure)
 - Replace with the group label
Model selection

• What is the right model to learn?
 – A prior knowledge helps a lot, but still a lot of guessing
 – Initial data analysis and visualization
 • We can make a good guess about the form of the distribution, shape of the function
 – Independences and correlations
 – Overfitting problem
 • Take into account the bias and variance of error estimates
Design cycle

Data \rightarrow Feature selection \rightarrow Model selection \rightarrow Learning \rightarrow Evaluation

Require prior knowledge

Learning

- **Learning = optimization problem.** Various criteria:
 - Mean square error
 \[w^* = \arg \min_w Error(w) \quad Error(w) = \frac{1}{N} \sum_{i=1}^{N} (y_i - f(x_i, w))^2 \]
 - Maximum likelihood (ML) criterion
 \[\Theta^* = \max_{\Theta} P(D | \Theta) \quad Error(\Theta) = -\log P(D | \Theta) \]
 - Maximum posterior probability (MAP)
 \[\Theta^* = \max_{\Theta} P(\Theta | D) \quad P(\Theta | D) = \frac{P(D | \Theta)P(\Theta)}{P(D)} \]
Learning

Learning = optimization problem
• Optimization problems can be hard to solve. Right choice of a model and an error function makes a difference.
• **Parameter optimizations**
 • Gradient descent, Conjugate gradient
 • Newton-Rhapson
 • Levenberg-Marquard
Some can be carried on-line on a sample by sample basis
Combinatorial optimizations (over discrete spaces):
• Hill-climbing
• Simulated-annealing
• Genetic algorithms

Parametric optimizations
• Sometimes can be solved directly but this depends on the error function and the model
 – Example: squared error criterion for linear regression
• Very often the error function to be optimized is not that nice.
 \[\text{Error}(\mathbf{w}) = f(\mathbf{w}) \quad \mathbf{w} = (w_0, w_1, w_2 \ldots w_k) \]
 - a complex function of weights (parameters)
 \[\text{Goal:} \quad \mathbf{w}^* = \arg \min_{\mathbf{w}} f(\mathbf{w}) \]
• Typical solution: iterative methods.
• **Example: Gradient-descent method**
 \[\text{Idea:} \quad \text{move the weights (free parameters) gradually in the error decreasing direction} \]
Gradient descent method

- Descend to the minimum of the function using the gradient information

\[\frac{\partial}{\partial w} Error (w) \big|_{w^*} \]

- Change the parameter value of \(w \) according to the gradient

\[w \leftarrow w^* - \alpha \frac{\partial}{\partial w} Error (w) \big|_{w^*} \]

\(\alpha > 0 \) - a learning rate (scales the gradient changes)
Gradient descent method

- To get to the function minimum repeat (iterate) the gradient based update few times

\[\text{Error}(w) \]

- Problems: local optima, saddle points, slow convergence
- More complex optimization techniques use additional information (e.g. second derivatives)

On-line learning (optimization)

- Error function looks at all data points at the same time
 E.g. \[\text{Error} (w) = \frac{1}{n} \sum_{i=1}^{n} (y_i - f(x_i, w))^2 \]
- On-line error - separates the contribution from a data point
 \[\text{Error}_{\text{ON-LINE}} (w) = (y_i - f(x_i, w))^2 \]
- Example: On-line gradient descent

\[\text{Error}(w) \]

- Advantages: 1. simple learning algorithm
 2. no need to store data (on-line data streams)
Design cycle

- Data
- Feature selection
 - Require prior knowledge
- Model selection
- Learning
- Evaluation
 - Covered earlier

Evaluation.

- **Simple holdout method.**
 - Divide the data to the training and test data.
- **Other more complex methods**
 - Based on cross-validation, random sub-sampling.
- What if we want to compare the predictive performance on a classification or a regression problem for two different learning methods?
- **Solution:** compare the error results on the test data set
- **Possible answer:** the method with better (smaller) testing error gives a better generalization error.
- Is this a good answer? How sure are we about the method with a better test score being truly better?
Evaluation.

- **Problem:** we cannot be 100% sure about generalization errors
- **Solution:** test the statistical significance of the result
- Central limit theorem:

 Let random variables X_1, X_2, \cdots, X_n form a random sample from a distribution with mean μ and variance σ, then if the sample n is large, the distribution

 $\sum_{i=1}^{n} X_i \approx N(n\mu, n\sigma^2)$ or $\frac{1}{n} \sum_{i=1}^{n} X_i \approx N(\mu, \sigma^2 / n)$

![Diagram of normal distributions with different standard deviations](image)