Decision trees

Milos Hauskrecht
milos@cs.pitt.edu
5329 Sennott Square

Announcement

• Term project:
 – Reports due on Wednesday, April 23 at 2pm
 – Project presentations:
 • When: Friday, April 25, 2003 at 1pm
 • Where: 5313 Sennott Square
 • 10 minutes ppt presentations
 – Example project reports are on the course web site.
Decision trees

- Back to the supervised learning
- An alternative approach to what we have seen so far:
 - Partition the input space to regions
 - Regress or classify independently in every region

Example:
Binary classification \{0,1\}
Binary attributes \(x_1, x_2, x_3\)
Decision trees

How to construct the decision tree?

- **Top-bottom algorithm:**
 - Find the best split condition (quantified based on the impurity measure)
 - Stops when no improvement possible

- **Impurity measure:**
 - Measures how well are the two classes separated
 - Ideally we would like to separate all 0s and 1

- **Splits of finite vs. continuous value attributes**
 Continuous value attributes conditions: \(x_3 \leq 0.5 \)

Impurity measure

Let \(|D| \) - Total number of data entries

\[|D_i| \] - Number of data entries classified as \(i \)

\[p_i = \frac{|D_i|}{|D|} \] - ratio of instances classified as \(i \)

- **Impurity measure** defines how well the classes are separated
- In general the impurity measure should satisfy:
 - Largest when data are split evenly for attribute values
 \[p_i = \frac{1}{\text{number of classes}} \]
 - Should be 0 when all data belong to the same class
Impurity measures

• There are various impurity measures used in the literature
 – Entropy based measure (Quinlan, C4.5)
 \[I(D) = Entropy(D) = -\sum_{i=1}^{k} p_i \log p_i \]

 Example for \(k=2 \)

 \[\sum \]

 \[= \]

 \[\sum \]

 \[= \]

 \[= \]

 \[= \]

 \[= \]

 \[= \]

 \[= \]

 \[= \]

 \[= \]

 \[= \]

 \[= \]

 \[= \]

 \[= \]

 \[= \]

 \[= \]

 \[= \]

 \[= \]

 \[= \]

 \[= \]

 \[= \]

 \[= \]

 \[= \]

 \[= \]

 \[= \]

 \[= \]

 \[= \]

 \[= \]

 \[= \]

 \[= \]

 \[= \]

 \[= \]

 \[= \]

 \[= \]

 \[= \]

 \[= \]

 \[= \]

 \[= \]

 \[= \]

 \[= \]

 \[= \]

 \[= \]

 \[= \]

 \[= \]

 \[= \]

 \[= \]

 \[= \]

 \[= \]

 \[= \]

 \[= \]

 \[= \]

 \[= \]

 \[= \]

 \[= \]

 \[= \]

 \[= \]

 \[= \]

 \[= \]

 \[= \]

 \[= \]

 \[= \]

 \[= \]

 \[= \]

 \[= \]

 \[= \]

 \[= \]

 \[= \]

 \[= \]

 \[= \]

 \[= \]

 \[= \]

 \[= \]

 \[= \]

 \[= \]

 \[= \]

 \[= \]

 \[= \]

 \[= \]

 \[= \]

 \[= \]

 \[= \]

 \[= \]

 \[= \]

 \[= \]

 \[= \]

 \[= \]

 \[= \]

 \[= \]

 \[= \]

 \[= \]

 \[= \]

 \[= \]

 \[= \]

 \[= \]

 \[= \]

 \[= \]

 \[= \]

 \[= \]

 \[= \]

 \[= \]

 \[= \]

 \[= \]

 \[= \]

 \[= \]

 \[= \]

 \[= \]

 \[= \]

 \[= \]

 \[= \]

 \[= \]

 \[= \]

 \[= \]

 \[= \]

 \[= \]

 \[= \]

 \[= \]

 \[= \]

 \[= \]

 \[= \]

 \[= \]

 \[= \]

 \[= \]

 \[= \]

 \[= \]

 \[= \]

 \[= \]

 \[= \]

 \[= \]

 \[= \]

 \[= \]

 \[= \]

 \[= \]

 \[= \]

 \[= \]

 \[= \]

 \[= \]

 \[= \]

 \[= \]

 \[= \]

 \[= \]

 \[= \]

 \[= \]

 \[= \]

 \[= \]

 \[= \]

 \[= \]

 \[= \]

 \[= \]

 \[= \]

 \[= \]

 \[= \]

 \[= \]

 \[= \]

 \[= \]

 \[= \]

 \[= \]

 \[= \]

 \[= \]

 \[= \]

 \[= \]

 \[= \]

 \[= \]

 \[= \]

 \[= \]

 \[= \]

 \[= \]

 \[= \]

 \[= \]

 \[= \]

 \[= \]

 \[= \]

 \[= \]

 \[= \]

 \[= \]

 \[= \]

 \[= \]

 \[= \]

 \[= \]

 \[= \]

 \[= \]

 \[= \]

 \[= \]

 \[= \]

 \[= \]

 \[= \]

 \[= \]

 \[= \]

 \[= \]

 \[= \]

 \[= \]

 \[= \]

 \[= \]

 \[= \]

 \[= \]

 \[= \]

 \[= \]

 \[= \]

 \[= \]

 \[= \]

 \[= \]

 \[= \]

 \[= \]

 \[= \]

 \[= \]

 \[= \]

 \[= \]

 \[= \]

 \[= \]

 \[= \]

 \[= \]

 \[= \]

 \[= \]

 \[= \]

 \[= \]

 \[= \]

 \[= \]

 \[= \]

 \[= \]

 \[= \]

 \[= \]

 \[= \]

 \[= \]

 \[= \]

 \[= \]

 \[= \]

 \[= \]

 \[= \]

 \[= \]

 \[= \]

 \[= \]

 \[= \]

 \[= \]

 \[= \]

 \[= \]

 \[= \]

 \[= \]

 \[= \]

 \[= \]

 \[= \]

 \[= \]

 \[= \]

 \[= \]

 \[= \]

 \[= \]

 \[= \]

 \[= \]

 \[= \]

 \[= \]

 \[= \]

 \[= \]

 \[= \]

 \[= \]

 \[= \]

 \[= \]

 \[= \]

 \[= \]

 \[= \]

 \[= \]

 \[= \]

 \[= \]

 \[= \]

 \[= \]

 \[= \]

 \[= \]

 \[= \]

 \[= \]

 \[= \]

 \[= \]

 \[= \]

 \[= \]

 \[= \]

 \[= \]

 \[= \]

 \[= \]

 \[= \]

 \[= \]

 \[= \]

 \[= \]

 \[= \]

 \[= \]

 \[= \]

 \[= \]

 \[= \]

 \[= \]

 \[= \]

 \[= \]

 \[= \]

 \[= \]

 \[= \]

 \[= \]

 \[= \]

 \[= \]

 \[= \]

 \[= \]

 \[= \]

 \[= \]

 \[= \]

 \[= \]

 \[= \]

 \[= \]

 \[= \]

 \[= \]

 \[= \]

 \[= \]

 \[= \]

 \[= \]

 \[= \]

 \[= \]

 \[= \]

 \[= \]

 \[= \]

 \[= \]

 \[= \]

 \[= \]

 \[= \]
Decision tree learning

- **Greedy learning algorithm:**

 Repeat until no or small improvement in the purity

 - Find the attribute with the highest gain

 - Add the attribute to the tree and split the set accordingly

- Builds the tree in the top-down fashion

 - Gradually expands the leaves of the partially built tree
- The method is greedy

 - It looks at a single attribute and gain in each step

 - May fail when the combination of attributes is needed to improve the purity (parity functions)

Limitations of greedy methods

Cases in which a combination of two or more attributes improves the impurity
Decision tree learning

By reducing the impurity measure we can grow very large trees

Problem: Overfitting

- We may split and classify very well the training set, but we may do worse in terms of the generalization error

Solutions to the overfitting problem:

- **Solution 1.**
 - Prune branches of the tree built in the first phase
 - Use validation set to test for the overfit
- **Solution 2.**
 - Test for the overfit in the tree building phase
 - Stop building the tree when performance on the validation set deteriorates

Mixture of experts

- **Clustering before classification/regression:**
 - The reduction is not tuned towards the prediction task
 - Two or more clusters may be covered by a simple predictor
- **Solution:**
 - Cover different input regions with many (simple) networks
 - A kind of predictive clustering with regard to the prediction accuracy
- **Mixture of experts**

 Expert
 - network learner

Mixture of experts

- **Gating network**: decides what expert to use

\[g_1, g_2, \ldots, g_k \] - gating functions