## CS 2750 Machine Learning Lecture 11

## **Support vector machines**

Milos Hauskrecht <u>milos@cs.pitt.edu</u> 5329 Sennott Square

CS 2750 Machine Learning













## Finding maximum margin hyperplanes

- Assume that examples in the training set are  $(\mathbf{x}_i, y_i)$  such that  $y_i \in \{+1, -1\}$
- Assume that all data satisfy:

$$\mathbf{w}^T \mathbf{x}_i + w_0 \ge 1$$
 for  $y_i = +1$ 

$$\mathbf{w}^T \mathbf{x}_i + w_0 \le -1 \qquad \text{for} \qquad y_i = -1$$

• The inequalities can be combined as:

$$y_i(\mathbf{w}^T\mathbf{x}_i + w_0) - 1 \ge 0$$
 for all  $i$ 

• Equalities define two hyperplanes:

$$\mathbf{w}^T \mathbf{x}_i + w_0 = 1 \qquad \mathbf{w}^T \mathbf{x}_i + w_0 = -1$$

CS 2750 Machine Learning



## Maximum margin hyperplane• We want to maximize $d_+ + d_- = \frac{2}{\|\mathbf{w}\|}$ • We do it by minimizing $\|\mathbf{w}\|^2 / 2 = \mathbf{w}^T \mathbf{w} / 2$ $\mathbf{w}, w_0$ - variables- But we also need to enforce the constraints on points: $|y_i(\mathbf{w}^T \mathbf{x} + w_0) - 1] \ge 0$





## Maximum hyperplane solution

• The resulting parameter vector  $\hat{\mathbf{w}}$  can be expressed as:

 $\hat{\mathbf{w}} = \sum_{i=1}^{n} \hat{\alpha}_{i} y_{i} \mathbf{x}_{i}$   $\hat{\alpha}_{i}$  is the solution of the dual problem

• The parameter  $w_0$  is obtained through Karush-Kuhn-Tucker conditions  $\hat{\alpha}_i [v_i(\hat{\mathbf{w}}\mathbf{x}_i + w_0) - 1] = 0$ 

### **Solution properties**

- $\hat{\alpha}_i = 0$  for all points that are not on the margin
- $\hat{\mathbf{w}}$  is a linear combination of support vectors only
- The decision boundary:

$$\hat{\mathbf{w}}^T \mathbf{x} + w_0 = \sum_{i \in SV} \hat{\alpha}_i y_i(\mathbf{x}_i^T \mathbf{x}) + w_0 = 0$$

CS 2750 Machine Learning

## <section-header><section-header><text><equation-block><equation-block><equation-block><equation-block>



## Extension to the linearly non-separable case Relax constraints with variables ξ<sub>i</sub> ≥ 0 w<sup>T</sup>x<sub>i</sub> + w<sub>0</sub> ≥ 1 - ξ<sub>i</sub> for y<sub>i</sub> = +1 w<sup>T</sup>x<sub>i</sub> + w<sub>0</sub> ≤ -1 + ξ<sub>i</sub> for y<sub>i</sub> = -1 Error occurs if ξ<sub>i</sub> ≥ 1, ∑<sub>i=1</sub><sup>n</sup> ξ<sub>i</sub> is the upper bound on the number of errors Introduce a penalty for the errors minimize ||w||<sup>2</sup>/2 + C∑<sub>i=1</sub><sup>n</sup> ξ<sub>i</sub> Subject to constraints C - set by a user, larger C leads to a larger penalty for an error

## Extension to linearly non-separable case



# Support vector machines• The decision boundary: $\hat{\mathbf{w}}^T \mathbf{x} + w_0 = \sum_{i \in SV} \hat{\alpha}_i y_i(\mathbf{x}_i^T \mathbf{x}) + w_0$ • The decision: $\hat{y} = sign\left[\sum_{i \in SV} \hat{\alpha}_i y_i(\mathbf{x}_i^T \mathbf{x}) + w_0\right]$ Note:• Decision on a new x requires to compute the inner product between the examples $(\mathbf{x}_i^T \mathbf{x})$ • Similarly, optimization depends on $(\mathbf{x}_i^T \mathbf{x}_j)$

### Nonlinear case The linear case requires to compute $(\mathbf{x}_i^T \mathbf{x})$ The non-linear case can be handled by using a set of features. • Essentially we map input vectors to (larger) feature vectors $\mathbf{x} \rightarrow \boldsymbol{\varphi}(\mathbf{x})$ It is possible to use SVM formalism on feature vectors ٠ $\boldsymbol{\varphi}(\mathbf{x})^T \boldsymbol{\varphi}(\mathbf{x'})$ **Kernel function** $K(\mathbf{x}, \mathbf{x}') = \boldsymbol{\varphi}(\mathbf{x})^T \boldsymbol{\varphi}(\mathbf{x}')$ Crucial idea: If we choose the kernel function wisely we can • compute linear separation in the feature space implicitly such that we keep working in the original input space !!!! CS 2750 Machine Learning

## Kernel function example

• Assume  $\mathbf{x} = [x_1, x_2]^T$  and a feature mapping that maps the input into a quadratic feature set

$$\mathbf{x} \to \mathbf{\phi}(\mathbf{x}) = [x_1^2, x_2^2, \sqrt{2}x_1x_2, \sqrt{2}x_1, \sqrt{2}x_2, 1]^T$$

• Kernel function for the feature space:

$$K(\mathbf{x'}, \mathbf{x}) = \mathbf{\phi}(\mathbf{x'})^T \mathbf{\phi}(\mathbf{x})$$
  
=  $x_1^2 x_1'^2 + x_2^2 x_2'^2 + 2x_1 x_2 x_1' x_2' + 2x_1 x_1' + 2x_2 x_2' + 1$   
=  $(x_1 x_1' + x_2 x_2' + 1)^2$   
=  $(1 + (\mathbf{x}^T \mathbf{x'}))^2$ 

• The computation of the linear separation in the higher dimensional space is performed implicitly in the original input space

CS 2750 Machine Learning



