CS 2750 Machine Learning
Lecture 1

Machine Learning

Milos Hauskrecht
milos@cs.pitt.edu
5329 Sennott Square, x4-8845

http://www.cs.pitt.edu/~milos/courses/cs2750/

Administration

Study material

• Handouts, your notes and course readings
• Primary textbook:
• Recommended book:
• Other books:
Administration

- **Lectures:**
 - Random short quizzes testing the understanding of basic concepts from previous lectures
- **Homeworks: weekly**
 - Programming tool: Matlab (CSSD machines and labs)
 - Matlab Tutorial: next week
- **Exams:**
 - Midterm (March)
- **Final project:**
 - Proposals (early March)
 - Written report + Oral presentation (end of the semester)

Tentative topics

- Concept learning.
- Density estimation.
- Linear models for regression and classification.
- Learning Bayesian networks.
- Clustering. Latent variable models.
- Dimensionality reduction. Feature extraction.
- Hidden Markov models.
- Reinforcement learning
Machine Learning

• The field of **machine learning** studies the design of computer programs (agents) capable of learning from past experience or adapting to changes in the environment

• The need for building agents capable of learning is everywhere
 – predictions in medicine,
 – text and web page classification,
 – speech recognition,
 – image/text retrieval,
 – commercial software

Learning

Learning process:
Learner (a computer program) processes data \(D \) representing past experiences and tries to either develop an appropriate response to future data, or describe in some meaningful way the data seen

Example:
Learner sees a set of patient cases (patient records) with corresponding diagnoses. It can either try:
 – to predict the presence of a disease for future patients
 – describe the dependencies between diseases, symptoms
Types of learning

- **Supervised learning**
 - Learning mapping between input x and desired output y
 - Teacher gives me y’s for the learning purposes

- **Unsupervised learning**
 - Learning relations between data components
 - No specific outputs given by a teacher

- **Reinforcement learning**
 - Learning mapping between input x and desired output y
 - Critic does not give me y’s but instead a signal (reinforcement) of how good my answer was

- **Other types of learning:**
 - explanation-based learning, etc.

Supervised learning

Data: $D = \{d_1, d_2, \ldots, d_n\}$ a set of n examples

\[d_i = \langle x_i, y_i \rangle \]

x_i is input vector, and y_i is desired output (given by a teacher)

Objective: learn the mapping $f : X \rightarrow Y$

\[y_i = f(x_i) \quad \text{for all} \quad i = 1, \ldots, n \]

Two types of problems:

- **Regression:** X discrete or continuous \rightarrow Y is **continuous**
- **Classification:** X discrete or continuous \rightarrow Y is **discrete**
Supervised learning examples

• **Regression:** Y is **continuous**

 Debt/equity
 Earnings
 Future product orders
 → company stock price

• **Classification:** Y is **discrete**

 Handwritten digit (array of 0,1s)
 → Label “3”

Unsupervised learning

• **Data:** \(D = \{ d_1, d_2, \ldots, d_n \} \)

 \(d_i = x_i \)
 vector of values
 No target value (output) y

• **Objective:**
 – learn relations between samples, components of samples

Types of problems:

• **Clustering**
 Group together “similar” examples, e.g. patient cases

• **Density estimation**
 – Model probabilistically the population of samples
Unsupervised learning example.

• **Density estimation.** We want to build the probability model of a population from which we draw samples $d_j = x_j$

\begin{center}
\includegraphics[width=\textwidth]{density_estimation.png}
\end{center}

Unsupervised learning. Density estimation

• A probability density of a point in the two dimensional space
 – Model used here: **Mixture of Gaussians**

\begin{center}
\includegraphics[width=\textwidth]{mixture_of_gaussians.png}
\end{center}
Reinforcement learning

- We want to learn: \(f : X \rightarrow Y \)
- We see samples of \(x \) but not \(y \)
- Instead of \(y \) we get a feedback (reinforcement) from a critic about how good our output was

![Diagram of Reinforcement Learning]

- The goal is to select outputs that lead to the best reinforcement

Learning

- Assume we see examples of pairs \((x, y)\) and we want to learn the mapping \(f : X \rightarrow Y \) to predict future \(y \)s for values of \(x \)
- We get the data what should we do?

![Graph of Data Points]
Learning bias

- **Problem:** many possible functions $f : X \rightarrow Y$ exists for representing the mapping between x and y
- Which one to choose? Many examples still unseen!

Learning bias

- Problem is easier when we make an assumption about the model, say, $f(x) = ax + b + \epsilon$
 \[\epsilon = N(0, \sigma) \] - random (normally distributed) noise
- Restriction to a linear model is an example of learning bias

Learning bias

- **Bias** provides the learner with some basis for choosing among possible representations of the function.
- **Forms of bias:** constraints, restrictions, model preferences
- **Important:** There is no learning without a bias!

![Graph showing linear relationship between X and Y]

Learning bias

- Choosing a parametric model or a set of models is not enough. Still too many functions $f(x) = ax + b + \epsilon \quad \epsilon = \mathcal{N}(0, \sigma)$
 - One for every pair of parameters a, b
Fitting the data to the model

- We are interested in finding the **best set** of model parameters

Objective: Find the set of parameters that:
- reduces the misfit between the model and observed data
- Or, (in other words) that explain the data the best

Error function:
Measure of misfit between the data and the model

- **Examples of error functions:**
 - Average square error
 \[
 \frac{1}{n} \sum_{i=1}^{n} (y_i - f(x_i))^2
 \]
 - Average misclassification error
 \[
 \frac{1}{n} \sum_{i=1}^{n} 1_{y_i \neq f(x_i)}
 \]

 Average # of misclassified cases

Fitting the data to the model

- **Linear regression**
 - Least squares fit with the linear model
 - minimizes
 \[
 \frac{1}{n} \sum_{i=1}^{n} (y_i - f(x_i))^2
 \]
Typical learning

Three basic steps:

- **Select a model** or a set of models (with parameters)
 E.g. \(y = ax + b + \varepsilon \) \(\varepsilon = N(0, \sigma) \)

- **Select the error function** to be optimized
 E.g. \(\frac{1}{n} \sum_{i=1}^{n} (y_i - f(x_i))^2 \)

- **Find the set of parameters optimizing the error function**
 - The model and parameters with the smallest error represent the best fit of the model to the data

But there are problems one must be careful about …

Learning

Problem

- We fit the model based on past experience (past examples seen)
- But ultimately we are interested in learning the mapping that performs well on the whole population of examples

Training data: Data used to fit the parameters of the model

Training error: \(\frac{1}{n} \sum_{i=1}^{n} (y_i - f(x_i))^2 \)

True (generalization) error (over the whole unknown population):
\(E_{(x,y)}[(y - f(x))^2] \) Mean squared error

Training error tries to approximate the true error !!!
Does a good training error imply a good generalization error ?
Overfitting

• Assume we have a set of 10 points and we consider polynomial functions as our possible models

Overfitting

• Fitting a linear function with the square error
• Error is nonzero
Overfitting

- Linear vs. cubic polynomial
- Higher order polynomial leads to a better fit, smaller error

Overfitting

- Is it always good to minimize the error of the observed data?
Overfitting

• For 10 data points, the degree 9 polynomial gives a perfect fit (Lagrange interpolation). Error is zero.
• Is it always good to minimize the training error?

More important: How do we perform on the unseen data?
Overfitting

Situation when the training error is low and the generalization error is high. Causes of the phenomenon:

- Model with a large number of parameters (degrees of freedom)
- Small data size (as compared to the complexity of the model)

How to evaluate the learner’s performance?

- **Generalization error** is the true error for the population of examples we would like to optimize

\[
E_{(x,y)}[(y - f(x))^2]
\]

- But it cannot be computed exactly
- **Sample mean only approximates the true mean**

- Optimizing (mean) training error can lead to the overfit, i.e. training error may not reflect properly the generalization error

\[
\frac{1}{n} \sum_{i=1}^{n} (y_i - f(x_i))^2
\]

- So how to test the generalization error?
How to evaluate the learner’s performance?

- **Generalization error** is the true error for the population of examples we would like to optimize
 \[E_{(x,y)}[(y - f(x))^2] \]
- Sample mean only approximates it
- How to measure the generalization error?
- **Two ways:**
 - **Theoretical:** Law of large numbers
 - statistical bounds on the difference between true and sample mean errors
 - **Practical:** Use a separate data set with \(m \) data samples to test
 - (Mean) test error
 \[
 \frac{1}{m} \sum_{j=1}^{m} (y_j - f(x_j))^2
 \]

Basic experimental setup to test the learner’s performance

1. Take a dataset \(D \) and divide it into:
 - Training data set
 - Testing data set
2. Use the training set and your favorite ML algorithm to train the learner
3. Test (evaluate) the learner on the testing data set

- The results on the testing set can be used to compare different learners powered with different models and learning algorithms
Solutions for overfitting

How to make the learner avoid overfitting?

• **Assure sufficient number of samples** in the training set
 – May not be possible

• **Hold some data out of the training set = validation set**
 – Train (fit) on the training set (w/o data held out);
 – Check for the generalization error on the validation set,
 choose the model based on the validation set error
 (cross-validation techniques)

• **Regularization (Occam’s Razor)**
 – Penalize for the model complexity (number of parameters)
 – Explicit preference towards simple models

Design of a learning system (first view)

```
Data

Model selection

Learning

Application or Testing
```
Design of a learning system.

1. **Data:** $D = \{d_1, d_2, \ldots, d_n\}$

2. **Model selection:**
 - **Select a model** or a set of models (with parameters)

 E.g. $y = ax + b + \epsilon \quad \epsilon = N(0, \sigma)$
 - **Select the error function** to be optimized

 E.g. $\frac{1}{n} \sum_{i=1}^{n} (y_i - f(x_i))^2$

3. **Learning:**
 - **Find the set of parameters optimizing the error function**

 – The model and parameters with the smallest error

4. **Application:**
 - **Apply the learned model**

 – E.g. predict ys for new inputs x using learned $f(x)$