Logical inference in FOL

Logical inference problem:
• Given a knowledge base KB (a set of sentences) and a sentence α, does the KB semantically entail α?

$$KB \models \alpha \quad ?$$

• In other words: In all interpretations in which sentences in the KB are true, is also α true?

Logical inference problem in the first-order logic is:
• semidecidable (algorithms exist that say yes to every entailed sentence, but no algorithm exists that also says no to every nonentailed sentence.)
Inference in FOL: Truth table approach

- Is the Truth-table approach a viable approach for the FOL?
 - NO!
- Why?
 - It would require us to enumerate and list all possible interpretations I
 - $I = \text{(assignments of symbols to objects, predicates to relations and functions to relational mappings)}$
 - Simply there are too many interpretations

Inference in FOL: Inference rules

- Is the Inference rule approach a viable approach for the FOL?
 - Yes.
- The inference rules represent sound inference patterns one can apply to sentences in the KB
- What is derived follows from the KB
- Caveat:
 - we need to add rules for handling quantifiers
Inference rules

• **Inference rules from the propositional logic:**
 – Modus ponens
 \[
 \frac{A \Rightarrow B, \ A}{B}
 \]
 – Resolution
 \[
 \frac{A \lor B, \ \neg B \lor C}{A \lor C}
 \]
 – and others: And-introduction, And-elimination, Or-introduction, Negation elimination

• **Additional inference rules** are needed for sentences with quantifiers and variables
 – Must involve variable substitutions

Variable substitutions

• Variables in the sentences can be substituted with terms.
 (terms = constants, variables, functions)

• **Substitution:**
 – Is a mapping from variables to terms
 \[
 \{x_1 \ / \ t_1, \ x_2 \ / \ t_2, \ldots\}
 \]
 – Application of the substitution to sentences

\[
\text{SUBST}(\{x \ / \ \text{Sam}, y \ / \ \text{Pam}\}, \text{Likes}(x, y)) = \text{Likes}(\text{Sam}, \text{Pam})
\]

\[
\text{SUBST}(\{x \ / \ z, y \ / \ \text{fatherof (John)}\}, \text{Likes}(x, y)) = \text{Likes}(z, \text{fatherof (John)})
\]
Inference rules for quantifiers

• **Universal elimination**
 \[
 \forall x \, \phi(x) \\
 \phi(a)
 \]
 \[a - \text{is a constant symbol}\]

 – substitutes a variable with a **constant symbol**

• **Example:**
 \[
 \forall x \, \text{Likes}(x, \text{IceCream})
 \downarrow
 \text{Likes}(\text{Ben, IceCream})
 \]
Inference rules for quantifiers

- **Existential elimination**

 \[\exists x \, \phi(x) \]
 \[\phi(a) \]

 - Substitutes a variable with a constant symbol that does not appear elsewhere in the KB

- **Examples:**

 - \[\exists x \, \text{Kill}(x, \text{Victim}) \rightarrow \text{Kill}(\text{Murderer}, \text{Victim}) \]
 Special constant called a **Skolem** constant

 - \[\exists x \, \text{Crown}(x) \land \text{OnHead}(x, \text{John}) \rightarrow \text{Crown}(C_1) \land \text{OnHead}(C_1, \text{John}) \]

Reduction to propositional inference

Suppose the KB contains just the following:

\[\forall x \, \text{King}(x) \land \text{Greedy}(x) \Rightarrow \text{Evil}(x) \]

- King(John)
- Greedy(John)
- Brother(Richard, John)

- Instantiating the universal sentence in all possible ways, we have:

 - King(John) \land Greedy(John) \Rightarrow Evil(John)
 - King(Richard) \land Greedy(Richard) \Rightarrow Evil(Richard)
 - King(John)
 - Greedy(John)
 - Brother(Richard, John)

- The new KB is **propositionalized**: proposition symbols are

 King(John), Greedy(John), Evil(John), King(Richard), etc.
Reduction contd.

- Every FOL KB can be **propositionalized** so as to preserve entailment
 - A ground sentence is entailed by new KB iff it is entailed by the original KB
- **Idea of the inference:**
 - propositionalize KB and query, apply resolution, return result
- **Problem:** with function symbols, there are infinitely many ground terms,
 - e.g., Father(Father(Father(John)))

Reduction contd.

Theorem: Herbrand (1930). If a ground sentence α is entailed by an FOL KB, it is entailed by a **finite** subset of the propositionalized KB

Idea: For $n = 0$ to ∞ do
- create a propositional KB by instantiating with depth-n terms
- see if α is entailed by this KB

Problem: works if α is entailed, loops if α is not entailed

Theorem: Turing (1936), Church (1936) Entailment for FOL is **semidecidable** (algorithms exist that say yes to every entailed sentence, but no algorithm exists that also says no to every nonentailed sentence.)
Problems with propositionalization

- **Propositionalization** seems to generate lots of irrelevant sentences

- E.g., from:
 \[\forall x \text{ King}(x) \land \text{Greedy}(x) \Rightarrow \text{Evil}(x) \]
 \[\text{King}(\text{John}) \]
 \[\forall y \text{Greedy}(y) \]
 \[\text{Brother}(\text{Richard}, \text{John}) \]

- It seems obvious that \(\text{Evil}(\text{John})\), but propositionalization produces lots of facts such as \(\text{Greedy}(\text{Richard})\) that are irrelevant

- With \(p\) \(k\)-ary predicates and \(n\) constants, there are \(p \cdot n^k\) instantiations.

Unification

- **Problem in inference:** Universal elimination gives many opportunities for substituting variables with ground terms
 \[
 \frac{\forall x \phi(x)}{\phi(a)} \quad a - \text{is a constant symbol}
 \]

- **Solution:** Try substitutions that help us to make progress
 – Use substitutions of “similar” sentences in KB

- **Example:**
 \[\forall x \text{King}(x) \land \text{Greedy}(x) \Rightarrow \text{Evil}(x) \]
 \[\text{King}(\text{John}) \]
 \[\forall y \text{Greedy}(y) \]
 If we use a substitution \(\sigma = \{x/\text{John}, y/\text{John}\}\)
 we can use modus ponens to infer \(\text{Evil}(\text{John})\) in one step
Unification.

• **Unification**: takes two similar sentences and computes the substitution that makes them look the same, if it exists

\[\text{UNIFY} \ (p, q) = \sigma \ \text{s.t.} \ \text{SUBST} (\sigma, p) = \text{SUBST} (\sigma, q) \]

• **Examples**:

\[\text{UNIFY} (\text{Knows} (\text{John}, x), \text{Knows} (\text{John}, \text{Jane})) = \{ x / \text{Jane} \} \]

\[\text{UNIFY}(\text{Knows} (\text{John}, x), \text{Knows} (y, \text{Ann})) = ? \]

\[\text{UNIFY} (\text{Knows} (\text{John}, x), \text{Knows} (y, \text{MotherOf} (y))) = ? \]

\[\text{UNIFY} (\text{Knows} (\text{John}, x), \text{Knows} (x, \text{Elizabeth})) = ? \]
Unification. Examples.

- **Unification:**
 \[\text{UNIFY} \ (p, q) = \sigma \text{ s.t. } \text{SUBST}(\sigma, p) = \text{SUBST} \ (\sigma, q) \]

- **Examples:**
 \[\text{UNIFY} \ (\text{Knows}(\text{John}, x), \text{Knows}(\text{John}, \text{Jane})) = \{x / \text{Jane}\} \]
 \[\text{UNIFY} \ (\text{Knows}(\text{John}, x), \text{Knows}(y, \text{Ann})) = \{x / \text{Ann}, y / \text{John}\} \]
 \[\text{UNIFY} \ (\text{Knows}(\text{John}, x), \text{Knows}(y, \text{MotherOf } (y))) = \{x / \text{MotherOf } (\text{John}), y / \text{John}\} \]
 \[\text{UNIFY} \ (\text{Knows}(\text{John}, x), \text{Knows}(x, \text{Elizabeth})) = ? \]
Unification

• To unify $\text{Knows}(John,x)$ and $\text{Knows}(y,z)$,
 $\sigma = \{y/John, x/z \}$ or $\sigma = \{y/John, x/John, z/John\}$

• The first unifier is more general than the second.

• There is a single most general unifier (MGU) that is unique up to renaming of variables.
 $\text{MGU} = \{ y/John, x/z \}$

The unification algorithm

function Unify(x, y, θ) returns a substitution to make x and y identical
inputs: x, a variable, constant, list, or compound
 y, a variable, constant, list, or compound
 θ, the substitution built up so far
if $\theta = \text{failure}$ then return failure
else if $x = y$ then return θ
else if $\text{VARIABLE?}(x)$ then return Unify-VAR(x, y, θ)
else if $\text{VARIABLE?}(y)$ then return Unify-VAR(y, x, θ)
else if $\text{COMPOUND?}(x)$ and $\text{COMPOUND?}(y)$ then
 return Unify ARGS[x], ARGS[y], Unify(OP[x], OP[y], θ)
else if $\text{LIST?}(x)$ and $\text{LIST?}(y)$ then
 return Unify REST[x], REST[y], Unify(First[x], First[y], θ)
else return failure
The unification algorithm

function UNIFY-VAR(var, x, θ) returns a substitution
inputs: var, a variable
 x, any expression
 θ, the substitution built up so far
if {var/val} ∈ θ then return UNIFY(val, x, θ)
else if {x/val} ∈ θ then return UNIFY(var, val, θ)
else if OCCUR-CHECK?(var, x) then return failure
else return add {var/x} to θ

Generalized inference rules

- Use substitutions that let us make inferences
 Example: Modus Ponens
- If there exists a substitution σ such that

\[\text{SUBST}(\sigma, A_i) = \text{SUBST}(\sigma, A_i') \quad \text{for all } i=1,2, n \]

\[A_1 \land A_2 \land \ldots A_n \Rightarrow B, \quad A_1', A_2', \ldots A_n' \]

\[\text{SUBST}(\sigma, B) \]

- Substitution that satisfies the generalized inference rule can be build via unification process

Advantage of the generalized rules: they are focused
- only substitutions that allow the inferences to proceed
- lifted inferences: we do not have to propositionalize the sentences in order to make inferences
Generalized Modus Ponens (GMP)

\[A_1 \land A_2 \land \ldots \land A_n \Rightarrow B, \quad A'_1, A'_2, \ldots, A'_n \]

\[\text{SUBST} \ (\sigma, B) \]

Example:
\[\forall x \ \text{King}(x) \land \text{Greedy}(x) \Rightarrow \text{Evil}(x) \]
\[\text{King}(John) \]
\[\forall y \ \text{Greedy}(y) \]
\[\text{Brother}(Richard, John) \]

\(A'_1 \) is \(\text{King}(John) \)
\(A_1 \) is \(\text{King}(x) \)
\(A'_2 \) is \(\text{Greedy}(y) \)
\(A_2 \) is \(\text{Greedy}(x) \)
\(\sigma \) is \(\{x/John, y/John\} \)
\(B \) is \(\text{Evil}(x) \)

\(\text{SUBS} (\sigma, B) = \text{Evil}(John) \)

- GMP is used with KB of definite clauses
- Definite clauses exactly one positive literal
- All variables assumed universally quantified

Resolution inference rule

- **Recall**: Resolution inference rule is sound and complete (refutation-complete) for the propositional logic and CNF

\[A \lor B, \quad \neg A \lor C \]

\[\begin{align*}
 & B \lor C \\
\end{align*} \]

- Generalized resolution rule is sound and refutation complete for the first-order logic and CNF w/o equalities (if unsatisfiable the resolution will find the contradiction)

\[\sigma = \text{UNIFY} \ (\phi_i, \neg \psi_j) \neq \text{fail} \]

\[\phi_1 \lor \phi_2 \ldots \lor \phi_k, \quad \psi_1 \lor \psi_2 \lor \ldots \lor \psi_n \]

\[\text{SUBST}(\sigma, \phi_1 \lor \ldots \lor \phi_{i-1} \lor \phi_{i+1} \ldots \lor \phi_k \lor \psi_1 \lor \ldots \lor \psi_{j-1} \lor \psi_{j+1} \ldots \lor \psi_n) \]

Example:
\[P(x) \lor Q(x), \quad \neg Q(John) \lor S(y) \]

\[X \]
Resolution inference rule

- **Recall**: Resolution inference rule is sound and complete (refutation-complete) for the **propositional logic** and CNF

 \[
 \frac{A \lor B, \quad \neg A \lor C}{B \lor C}
 \]

- **Generalized resolution rule is sound and refutation complete** for the first-order logic and CNF w/o equalities (if unsatisfiable the resolution will find the contradiction)

 \[
 \sigma = \text{UNIFY} \ (\phi_i, \neg \psi_j) \neq \text{fail}
 \]

 \[
 \sigma = \text{SUBST}(\phi_1 \lor \ldots \lor \phi_k, \psi_1 \lor \psi_2 \lor \ldots \psi_n)
 \]

Example:

\[
P(x) \lor Q(x), \quad \neg Q(\text{John}) \lor S(y)\]

\[
P(\text{John}) \lor S(y)
\]

Inference with resolution rule

- **Proof by refutation:**

 - Prove that \(KB \land \neg \alpha \) is **unsatisfiable**

 - resolution is **refutation-complete**

- **Main procedure (steps):**

 1. Convert \(KB \land \neg \alpha \) to CNF with ground terms and universal variables only
 2. Apply repeatedly the resolution rule while keeping track and consistency of substitutions
 3. Stop when empty set (contradiction) is derived or no more new resolvents (conclusions) follow
Conversion to CNF

1. Eliminate implications, equivalences

\((p \Rightarrow q) \rightarrow (\neg p \lor q)\)

2. Move negations inside (DeMorgan’s Laws, double negation)

\(- (p \land q) \rightarrow \neg p \lor \neg q \)
\(- (p \lor q) \rightarrow \neg p \land \neg q \)
\(- \forall x \ p \rightarrow \exists x \ \neg p \)
\(- \exists x \ p \rightarrow \forall x \ \neg p \)
\(- \neg p \rightarrow p \)

3. Standardize variables (rename duplicate variables)

\((\forall x \ P(x)) \lor (\exists x \ Q(x)) \rightarrow (\forall x \ P(x)) \lor (\exists y \ Q(y))\)

Conversion to CNF

4. Move all quantifiers left (no invalid capture possible)

\((\forall x \ P(x)) \lor (\exists y \ Q(y)) \rightarrow \forall x \ \exists y \ P(x) \lor Q(y)\)

5. Skolemization (removal of existential quantifiers through elimination)

- If no universal quantifier occurs before the existential quantifier, replace the variable with a new constant symbol

\(\exists y \ P(A) \lor Q(y) \rightarrow P(A) \lor Q(B)\)

- If a universal quantifier precede the existential quantifier, replace the variable with a function of the “universal” variable

\(\forall x \ \exists y \ P(x) \lor Q(y) \rightarrow \forall x \ P(x) \lor Q(F(x))\)

\(F(x) \quad - \text{a Skolem function}\)
Conversion to CNF

6. **Drop universal quantifiers** (all variables are universally quantified)

 \[\forall x \ (P(x) \vee Q(F(x))) \rightarrow P(x) \vee Q(F(x)) \]

7. **Convert to CNF using the distributive laws**

 \[p \vee (q \land r) \rightarrow (p \vee q) \land (p \vee r) \]

 The result is a CNF with variables, constants, functions

Resolution example

\[\begin{array}{c}
\text{KB} \\
\neg P(w) \lor Q(w), \neg Q(y) \lor S(y), \ P(x) \lor R(x), \neg R(z) \lor S(z), \neg S(A)
\end{array} \]
Resolution example

KB

\[\neg P(w) \lor Q(w), \neg Q(y) \lor S(y), \ P(x) \lor R(x), \neg R(z) \lor S(z), \ \neg S(A) \]

\{y / w\}

\[\neg P(w) \lor S(w) \]

Resolution example

KB

\[\neg P(w) \lor Q(w), \neg Q(y) \lor S(y), \ P(x) \lor R(x), \neg R(z) \lor S(z), \ \neg S(A) \]

\{y / w\}

\[\neg P(w) \lor S(w) \]

\{x / w\}

\[S(w) \lor R(w) \]
Resolution example

\[KB \vdash \neg \alpha \]

\[\neg P(w) \lor Q(w), \neg Q(y) \lor S(y), \ P(x) \lor R(x), \neg R(z) \lor S(z), \neg S(A) \]

\[\neg P(w) \lor S(w) \quad \{ y / w \} \]

\[\neg P(w) \lor S(w) \quad \{ x / w \} \]

\[S(w) \lor R(w) \quad \{ z / w \} \]

\[S(w) \]

\[KB \models \alpha \]

Contradiction

CS 2740 Knowledge Representation M. Hauskrecht