Limitations of propositional logic

World we want to represent and reason about consists of a number of objects with variety of properties and relations among them

Propositional logic:

- Represents statements about the world without reflecting this structure and without modeling these entities explicitly

Consequence:

- some knowledge is hard or impossible to encode in the propositional logic.
- Two cases that are hard to represent:
 - Statements about similar objects, relations
 - Statements referring to groups of objects.
First-order logic (FOL)

• More expressive than propositional logic

• Eliminates deficiencies of PL by:
 – Representing objects, their properties, relations and statements about them;
 – Introducing variables that refer to an arbitrary objects and can be substituted by a specific object
 – Introducing quantifiers allowing us to make statements over groups objects without the need to represent each of them separately

Logic

Logic is defined by:

• A set of sentences
 – A sentence is constructed from a set of primitives according to syntax rules.

• A set of interpretations
 – An interpretation gives a semantic to primitives. It associates primitives with objects, values in the real world.

• The valuation (meaning) function V
 – Assigns a truth value to a given sentence under some interpretation

 $V : \text{sentence} \times \text{interpretation} \rightarrow \{True, False\}$
First-order logic. Syntax.

Term - syntactic entity for representing objects

Terms in FOL:
- **Constant symbols**: represent specific objects
 - E.g. *John, France, car89*
- **Variables**: represent objects of a certain type (type = domain of discourse)
 - E.g. *x, y, z*
- **Functions** applied to one or more terms
 - E.g. *father-of*(John)

 \[
 \text{father-of}(\text{father-of}(\text{John}))
 \]

Sentences in FOL:
- **Atomic sentences**:
 - A **predicate symbol** applied to 0 or more terms

 Examples:

 \[
 \begin{align*}
 \text{Red(car12)}, \\
 \text{Sister(Amy, Jane);} \\
 \text{Manager(father-of(John));}
 \end{align*}
 \]

 - \(t_1 = t_2 \) **equivalence** of terms

 Example:

 \[
 \text{John} = \text{father-of}(\text{Peter})
 \]
First order logic. Syntax.

Sentences in FOL:
• Complex sentences:
 • Assume ϕ, ψ are sentences in FOL. Then:
 - $(\phi \land \psi)$, $(\phi \lor \psi)$, $(\phi \Rightarrow \psi)$, $(\phi \Leftrightarrow \psi)$, $\neg \psi$
 and
 - $\forall x \phi$, $\exists y \phi$
 are sentences

Symbols \exists, \forall
 - stand for the existential and the universal quantifier

Semantics. Interpretation.
An interpretation I is defined by a mapping to the domain of discourse D or relations on D
• domain of discourse: a set of objects in the world we represent and refer to;
An interpretation I maps:
• Constant symbols to objects in D
 $I(John) = \text{John}$
• Predicate symbols to relations, properties on D
 $I(brother) = \{ \langle \text{John}, \text{Mary} \rangle; \langle \text{John}, \text{Susan} \rangle; \ldots \}$
• Function symbols to functional relations on D
 $I(father-of) = \{ \langle \text{John} \rangle \rightarrow \text{Mary}; \langle \text{Joseph} \rangle \rightarrow \text{Mary}; \ldots \}$
Semantics of sentences.

Meaning (evaluation) function:

\[V : \text{sentence} \times \text{interpretation} \rightarrow \{ \text{True}, \text{False} \} \]

A predicate \(\text{predicate}(\text{term-1}, \text{term-2}, \text{term-3}, \text{term-n}) \) is true for the interpretation \(I \), iff the objects referred to by \(\text{term-1}, \text{term-2}, \text{term-3}, \text{term-n} \) are in the relation referred to by \(\text{predicate} \)

\[
\begin{align*}
I(\text{John}) &= \begin{cases} 0 \end{cases} \\
I(\text{Paul}) &= \begin{cases} 1 \end{cases} \\
I(\text{brother}) &= \left\{ \left\langle \begin{cases} 0 \end{cases}, \begin{cases} 0 \end{cases} \right\rangle; \left\langle \begin{cases} 0 \end{cases}, \begin{cases} 1 \end{cases} \right\rangle; \ldots \right\} \\
V(\text{brother}(\text{John}, \text{Paul}), I) &= \text{True}
\end{align*}
\]

Semantics of sentences.

• **Equality**
 \[V(\text{term-1} = \text{term-2}, I) = \text{True} \]
 Iff \(I(\text{term-1}) = I(\text{term-2}) \)

• **Boolean expressions**: standard
 E.g. \[V(\text{sentence-1} \lor \text{sentence-2}, I) = \text{True} \]
 Iff \(V(\text{sentence-1}, I) = \text{True} \) or \(V(\text{sentence-2}, I) = \text{True} \)

• **Quantifications**
 \[V(\forall x \phi, I) = \text{True} \]
 Iff for all \(d \in D \) \(V(\phi, I[x/d]) = \text{True} \)
 \[V(\exists x \phi, I) = \text{True} \]
 Iff there is a \(d \in D \), s.t. \(V(\phi, I[x/d]) = \text{True} \)
Note on the domain of discourse

• Can the domain of discourse be an empty set?
• Answer: No.
• Reason:
 – many equivalences in the logic would become false for the empty set and would have to be dealt with separately
• Example:
 \[\exists x \ (\phi \lor \varphi(x)) \iff (\phi \lor \exists x \varphi(x)) \]

• Assume: \(\phi = \text{True} \) then:
 \[\text{False} \iff \text{True} \]

Order of quantifiers

• Order of quantifiers of the same type does not matter
 \[\forall x, y \ \text{parent} \ (x, y) \Rightarrow \text{child} \ (y, x) \]
 \[\forall y, x \ \text{parent} \ (x, y) \Rightarrow \text{child} \ (y, x) \]

• Order of different quantifiers changes the meaning
 \[\forall x \exists y \ \text{loves} \ (x, y) \]
 Everybody loves somebody
 \[\exists y \forall x \ \text{loves} \ (x, y) \]
 There is someone who is loved by everyone
Connections between quantifiers

Everyone likes ice cream

\(\forall x \, \text{likes} (x, \text{IceCream}) \)

Is it possible to convey the same meaning using an existential quantifier?

There is no one who does not like ice cream

\(\neg \exists x \, \neg \text{likes} (x, \text{IceCream}) \)

A universal quantifier in the sentence can be expressed using an existential quantifier !!!

Connections between quantifiers

Someone likes ice cream

\(\exists x \, \text{likes} (x, \text{IceCream}) \)

Is it possible to convey the same meaning using a universal quantifier?

Not everyone does not like ice cream

\(\neg \forall x \, \neg \text{likes} (x, \text{IceCream}) \)

An existential quantifier in the sentence can be expressed using a universal quantifier !!!
Knowledge engineering in FOL

1. Identify the problem/task you want to solve
2. Assemble the relevant knowledge
3. Decide on a vocabulary of predicates, functions, and constants
4. Encode general knowledge about the domain
5. Encode a description of the specific problem instance
6. Pose queries to the inference procedure and get answers
7. Debug the knowledge base

The electronic circuits domain

One-bit full adder
The electronic circuits domain

1. Identify the task
 - Does the circuit actually add properly? (circuit verification)

2. Assemble the relevant knowledge
 - Composed of wires and gates; Types of gates (AND, OR, XOR, NOT)
 - Irrelevant attributes: size, shape, color, cost of gates

3. Decide on a vocabulary
 • Alternatives:
 Type(X₁) = XOR
 Type(X₁, XOR)
 XOR(X₁)

4. Encode general knowledge of the domain
 - \(\forall t₁, t₂ \) Connected(t₁, t₂) \(\Rightarrow \) Signal(t₁) = Signal(t₂)
 - \(\forall t \) Signal(t) = 1 \(\lor \) Signal(t) = 0
 - 1 \(\neq \) 0
 - \(\forall t₁, t₂ \) Connected(t₁, t₂) \(\Rightarrow \) Connected(t₂, t₁)
 - \(\forall g \) Type(g) = OR \(\Rightarrow \) Signal(Out(1,g)) = 1 \(\Leftrightarrow \) \(\exists n \) Signal(In(n,g)) = 1
 - \(\forall g \) Type(g) = AND \(\Rightarrow \) Signal(Out(1,g)) = 0 \(\Leftrightarrow \) \(\exists n \) Signal(In(n,g)) = 0
 - \(\forall g \) Type(g) = XOR \(\Rightarrow \) Signal(Out(1,g)) = 1 \(\Leftrightarrow \) Signal(In(1,g)) \(\neq \) Signal(In(2,g))
 - \(\forall g \) Type(g) = NOT \(\Rightarrow \) Signal(Out(1,g)) \(\neq \) Signal(In(1,g))
The electronic circuits domain

5. Encode the specific problem instance

Type(X₁) = XOR
Type(X₂) = XOR
Type(A₁) = AND
Type(A₂) = AND
Type(O₁) = OR

Connected(Out(1,X₁),In(1,X₂))
Connected(In(1,C₁),In(1,X₁))
Connected(Out(1,X₁),In(2,A₂))
Connected(In(1,C₁),In(1,A₁))
Connected(Out(1,A₂),In(1,O₁))
Connected(In(2,C₁),In(2,X₁))

...
The electronic circuits domain

6. **Pose queries to the inference procedure**
 What are the possible sets of values of all the terminals for the adder circuit?

 \[\exists i_1, i_2, i_3, o_1, o_2 \text{ Signal(In}(1, C_1)) = i_1 \land \text{Signal(In}(2, C_1)) = i_2 \land \text{Signal(In}(3, C_1)) = i_3 \land \text{Signal(Out}(1, C_1)) = o_1 \land \text{Signal(Out}(2, C_1)) = o_2 \]

7. **Debug the knowledge base**
 May have omitted assertions like \(1 \neq 0 \)

Representing knowledge in FOL

Example:

Kinship domain

- **Objects:** people

 \(John, Mary, Jane, \ldots \)

- **Properties:** gender

 \(Male(x), Female(x) \)

- **Relations:** parenthood, brotherhood, marriage

 \(Parent(x, y), \) \(Brother(x, y), \) \(Spouse(x, y) \)

- **Functions:** mother-of (one for each person \(x \))

 \(MotherOf(x) \)
Kinship domain in FOL

Relations between predicates and functions: write down what we know about them; how relate to each other.

- Male and female are disjoint categories
 \[\forall x \text{ Male} (x) \iff \neg \text{Female} (x) \]
- Parent and child relations are inverse
 \[\forall x, y \text{ Parent} (x, y) \iff \text{Child} (y, x) \]
- A grandparent is a parent of parent
 \[\forall g, c \text{ Grandparent} (g, c) \iff \exists p \text{ Parent} (g, p) \land \text{Parent} (p, c) \]
- A sibling is another child of one's parents
 \[\forall x, y \text{ Sibling} (x, y) \iff (x \neq y) \land \exists p \text{ Parent} (p, x) \land \text{Parent} (p, y) \]
- And so on
Logical inference in FOL

Logical inference problem:
- Given a knowledge base \(KB \) (a set of sentences) and a sentence \(\alpha \), does the KB semantically entail \(\alpha \)?

\[KB \models \alpha \ ? \]

In other words: In all interpretations in which sentences in the KB are true, is also \(\alpha \) true?

Logical inference problem in the first-order logic is undecidable !!!: No procedure that can decide the entailment for all possible input sentences in a finite number of steps.

Logical inference problem in the Propositional logic

Computational procedures that answer:

\[KB \models \alpha \ ? \]

Three approaches:
- Truth-table approach
- Inference rules
- Conversion to the inverse SAT problem
 - Resolution-refutation
Inference in FOL: Truth table approach

• Is the Truth-table approach a viable approach for the FOL?
 • NO!
 • Why?
 • It would require us to enumerate and list all possible interpretations I
 • $I =$ (assignments of symbols to objects, predicates to relations and functions to relational mappings)
 • Simply there are too many interpretations

Inference in FOL: Inference rules

• Is the Inference rule approach a viable approach for the FOL?
 • Yes.
 • The inference rules represent sound inference patterns one can apply to sentences in the KB
 • What is derived follows from the KB
 • Caveat:
 – we need to add rules for handling quantifiers
Inference rules

- **Inference rules from the propositional logic:**
 - Modus ponens
 \[
 \frac{A \Rightarrow B, \ A}{B}
 \]
 - Resolution
 \[
 \frac{A \lor B, \ \neg B \lor C}{A \lor C}
 \]
 - and others: And-introduction, And-elimination, Or-introduction, Negation elimination
- **Additional inference rules** are needed for sentences with quantifiers and variables
 - Must involve variable substitutions

Variable substitutions

- Variables in the sentences can be substituted with terms.
 (terms = constants, variables, functions)
- **Substitution:**
 - Is a mapping from variables to terms
 \[
 \{x_1 / t_1, x_2 / t_2, \ldots\}
 \]
 - Application of the substitution to sentences
 \[
 \text{SUBST}(\{x / \text{Sam}, y / \text{Pam}\}, \text{Likes}(x, y)) = \text{Likes}(\text{Sam}, \text{Pam})
 \]
 \[
 \text{SUBST}(\{x / z, y / \text{fatherof (John)}\}, \text{Likes}(x, y)) =
 \text{Likes}(z, \text{fatherof (John)})
 \]
Inference rules for quantifiers

- **Universal elimination**
 \[\forall x \phi(x) \]
 \[\phi(a) \quad a \text{ - is a constant symbol} \]
 - substitutes a variable with a **constant symbol**

- **Example:**
 \[\forall x \text{Likes}(x, \text{IceCream}) \]
 \[\Downarrow \]
 \[\text{Likes}(\text{Ben}, \text{IceCream}) \]

- **Existential elimination**
 \[\exists x \phi(x) \]
 \[\phi(a) \]
 - Substitutes a variable with a **constant symbol** that does not appear elsewhere in the KB

- **Examples:**
 - \[\exists x \text{Kill}(x, \text{Victim}) \quad \rightarrow \quad \text{Kill(} \text{Murderer}, \text{Victim} \text{)} \]
 - Special constant called a **Skolem** constant
 - \[\exists x \text{Crown}(x) \land \text{OnHead}(x, \text{John}) \]
 \[\rightarrow \]
 \[\text{Crown}(C_1) \land \text{OnHead}(C_1, \text{John}) \]
Reduction to propositional inference

Suppose the KB contains just the following:

\[\forall x \text{King}(x) \land \text{Greedy}(x) \Rightarrow \text{Evil}(x) \]

- King(John)
- Greedy(John)
- Brother(Richard,John)

• Instantiating the universal sentence in all possible ways, we have:
 - King(John) \land Greedy(John) \Rightarrow Evil(John)
 - King(Richard) \land Greedy(Richard) \Rightarrow Evil(Richard)
 - King(John)
 - Greedy(John)
 - Brother(Richard,John)

• The new KB is propositionalized: proposition symbols are
 - King(John), Greedy(John), Evil(John), King(Richard), etc.

Reduction contd.

• Every FOL KB can be propositionalized so as to preserve entailment
• (A ground sentence is entailed by new KB iff it is entailed by the original KB)

• Idea of the inference:
 - propositionalize KB and query, apply resolution, return result

• Problem: with function symbols, there are infinitely many ground terms,
 - e.g., Father(Father(Father(John))))
Reduction contd.

Theorem: Herbrand (1930). If a sentence α is entailed by an FOL KB, it is entailed by a finite subset of the propositionalized KB

Idea: For $n = 0$ to ∞ do
- create a propositional KB by instantiating with depth-n terms
- see if α is entailed by this KB

Problem: works if α is entailed, loops if α is not entailed

Theorem: Turing (1936), Church (1936) Entailment for FOL is semidecidable (algorithms exist that say yes to every entailed sentence, but no algorithm exists that also says no to every nonentailed sentence.)

Problems with propositionalization

- **Propositionalization** seems to generate lots of irrelevant sentences
- E.g., from:
 \[\forall x \ King(x) \land Greedy(x) \Rightarrow Evil(x) \]
 King(John)
 \[\forall y \ Greedy(y) \]
 Brother(Richard, John)
- It seems obvious that Evil(John), but propositionalization produces lots of facts such as Greedy(Richard) that are irrelevant
- With p k-ary predicates and n constants, there are $p \cdot n^k$ instantiations.