Markov decision processes

Milos Hauskrecht
milos@cs.pitt.edu
5329 Sennott Square

Administrative announcements

Final exam:
- Monday, December 8, 2008
- In-class
- Only the material covered after the midterm

Term project assignment:
- Thursday, December 11, 2008 noon
Decision trees

- **Decision tree:**
 - A basic approach to represent decision making problems in the presence of uncertainty

- **Limitations:**
 - What if there are many decision stages to consider?
 - What if there are many different outcomes?

- **Markov decision process (MDP)**
 - A framework for representing complex multi-stage decision problems in the presence of uncertainty
 - More compact representation of the decision problem
 - Efficient solutions

Markov decision process

- **Markov decision process (MDP)**
 - Models the dynamics of the environment under different actions
 - Frequently used in AI, OR, control theory
 - **Markov assumption:** next state depends on the previous state and action, and not states (actions) in the past
Markov decision process

Formal definition: 4-tuple \((S, A, T, R)\)

- **A set of states**: \(S\) \((X)\) locations of a robot
- **A set of actions**: \(A\) move actions
- **Transition model**: \(S \times A \times S \rightarrow [0,1]\) where can I get with different moves
- **Reward model**: \(S \times A \times S \rightarrow \mathbb{R}\) reward/cost for a transition

Markov decision problem

- **Example: agent navigation in the Maze**
 - 4 moves in compass directions
 - Effects of moves are stochastic – we may wind up in other than intended location with non-zero probability
 - **Objective**: reach the goal state in the shortest expected time
Agent navigation example

• An MDP model:
 – **State:** S – position of an agent
 – **Action:** A – a move
 – **Transition model** P
 – **Reward:** R
 • -1 for each move
 • +100 for reaching the goal

• **Goal:** find the policy maximizing future expected rewards

Policy

– **A policy:**

 maps states to actions

 $\pi : S \rightarrow A$

 $\pi :$

 | Position 1 \rightarrow right |
 | Position 2 \rightarrow right |
 | ... |
 | Position 20 \rightarrow left |

MDP problem

- We want to find the best policy $\pi^* : S \rightarrow A$
- **Value function** (V) for a policy, quantifies the goodness of a policy through, e.g. infinite horizon, discounted model

$$E(\sum_{t=0}^{\infty} \gamma^t r_t)$$

It:
1. combines future rewards over a trajectory
2. combines rewards for multiple trajectories (through expectation-based measures)

Valuation models

- **Objective:**
 Find a policy $\pi^* : S \rightarrow A$
 That maximizes some combination of future reinforcements (rewards) received over time
- **Valuation models** (quantify how good the mapping is):
 - **Finite horizon model**
 $$E(\sum_{t=0}^{T} r_t)$$
 Time horizon: $T > 0$
 - **Infinite horizon discounted model**
 $$E(\sum_{t=0}^{\infty} \gamma^t r_t)$$
 Discount factor: $0 < \gamma < 1$
 - **Average reward**
 $$\lim_{T \rightarrow \infty} \frac{1}{T} E(\sum_{t=0}^{T} r_t)$$
Value of a policy for MDP

- Assume a fixed policy $\pi : S \rightarrow A$
- How to compute the value of a policy under infinite horizon discounted model?
 Fixed point equation:
 $$V^\pi(s) = R(s, \pi(s)) + \gamma \sum_{s' \in S} P(s' | s, \pi(s)) V^\pi(s')$$

 - For a finite state space— we get a set of linear equations

Optimal policy

- The value of the optimal policy
 $$V^*(s) = \max_{a \in A} \left[R(s, a) + \gamma \sum_{s' \in S} P(s' | s, a) V^*(s') \right]$$
 Value function mapping form:
 $$V^*(s) = (HV^*)(s)$$

- The optimal policy:
 $$\pi^* : S \rightarrow A$$
 $$\pi^*(s) = \arg \max_{a \in A} \left[R(s, a) + \gamma \sum_{s' \in S} P(s' | s, a) V^*(s') \right]$$
Computing optimal policy

Three methods:

- Value iteration
- Policy iteration
- Linear program solutions

Value iteration

Method:
- computes the optimal value function first then the policy
- iterative approximation
- converges to the optimal value function

Value iteration (ε)

initialize V ;; V is vector of values for all states
repeat
 set $V' \leftarrow V$
 set $V \leftarrow HV$
until $\|V' - V\|_\infty \leq \varepsilon$
output $\pi^*(s) = \arg \max_{a \in A} \left[R(s, a) + \gamma \sum_{s' \in S} P(s' | s, a)V(s') \right]$
Policy iteration

Method:
– Takes a policy and computes its value
– Iteratively improves the policy, till policy cannot be further improved

Policy iteration
initialize a policy μ
repeat
set $\pi \leftarrow \mu$
compute V^π
compute $\mu(s) = \arg\max_{a \in A} \left[R(s, a) + \gamma \sum_{s' \in S} P(s'|s, a)V^\pi(s') \right]$
until $\pi \equiv \mu$
output π

Linear program solution

Method:
– converts the problem as a linear program problem

• Let v_s denotes $V(s)$
• Linear program:
 \[
 \max \sum_{s \in S} v_s \\
 \text{Subject to:} \\
 v_s \geq R(s, a) + \gamma \sum_{s' \in S} P(s'|s, a)v_{s'} \quad \forall s \in S, a \in A
 \]