Representation of actions, situations, events

The world is dynamic:
• What is true now may not be true tomorrow
• Changes in the world may be triggered by our activities

Problems:
• Logic (FOL) as we had it referred to a static world. How to represent the change in the FOL?
• How to represent actions we can use to change the world?

Planning problem:
• find a sequence of actions that achieves some goal in this complex world
Planning

Planning problem:
• find a sequence of actions that achieves some goal
• An instance of a search problem

Methods for modeling and solving a planning problem:
• Situation calculus (extends FOL)
• State space search (STRIPS - restricted FOL)
• Plan-based search (for STRIPS)
• GRAPHPLAN – propositional languages

Situation calculus

Provides a framework for representing change, actions and reasoning about them

• Situation calculus
 – based on first-order logic,
 – a situation variable models new states of the world
 – action objects model activities
 – uses inference methods developed for FOL to do the reasoning
Situation calculus

- Logic for reasoning about changes in the state of the world
- **The world is described by:**
 - Sequences of situations of the current state
 - Changes from one situation to another are **caused by actions**
- **The situation calculus allows us to:**
 - Describe the initial state and a goal state
 - Build the KB that describes the effect of actions (operators)
 - Prove that the KB and the initial state lead to a goal state
 - extracts a plan as side-effect of the proof

The language is based on the First-order logic plus:
- **Special variables:** s,a – objects of type situation and action
- **Action functions:** return actions.
 - E.g. $\text{Move}(A, \text{TABLE}, B)$ represents a move action
 - $\text{Move}(x,y,z)$ represents an action schema
- **Two special function symbols of type situation**
 - s_0 – initial situation
 - $\text{DO}(a,s)$ – denotes the situation obtained after performing an action a in situation s
- **Situation-dependent functions and relations**
 (also called fluents)
 - **Relation:** $\text{On}(x,y,s)$ – object x is on object y in situation s;
 - **Function:** $\text{Above}(x,s)$ – object that is above x in situation s.
Situation calculus. Blocks world example.

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Initial state

- $\text{On}(A, \text{Table}, s_0)$
- $\text{On}(B, \text{Table}, s_0)$
- $\text{On}(C, \text{Table}, s_0)$
- $\text{Clear}(A, s_0)$
- $\text{Clear}(B, s_0)$
- $\text{Clear}(C, s_0)$
- $\text{Clear}(\text{Table}, s_0)$

Goal

Find a state (situation) s, such that

- $\text{On}(A, B, s)$
- $\text{On}(B, C, s)$
- $\text{On}(C, \text{Table}, s)$

Note: It is not necessary that the goal describes all relations

Blocks world example.

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Initial state

- $\text{On}(A, \text{Table}, s_0)$
- $\text{On}(B, \text{Table}, s_0)$
- $\text{On}(C, \text{Table}, s_0)$
- $\text{Clear}(A, s_0)$
- $\text{Clear}(B, s_0)$
- $\text{Clear}(C, s_0)$
- $\text{Clear}(\text{Table}, s_0)$

Goal

- $\text{On}(A, B, s)$
- $\text{On}(B, C, s)$
- $\text{On}(C, \text{Table}, s)$

Note: It is not necessary that the goal describes all relations

- $\text{Clear}(A, s)$
Blocks world example.

Assume a simpler goal $On(A, B, s)$

Initial state

$On(A, Table, s_0)$
$On(B, Table, s_0)$
$On(C, Table, s_0)$
$Clear(A, s_0)$
$Clear(B, s_0)$
$Clear(C, s_0)$
$Clear(Table, s_0)$

Goal $On(A, B, s)$

3 possible goal configurations

Knowledge base: Axioms.

Knowledge base needed to support the reasoning:

- Must represent changes in the world due to actions.

Two types of axioms:

- **Effect axioms**
 - changes in situations that result from actions

- **Frame axioms**
 - things preserved from the previous situation
Blocks world example. Effect axioms.

Effect axioms:

Moving x from y to z. \(MOVE (x, y, z) \)

Effect of move changes on **On** relations

\[
On(x, y, s) \land Clear(x, s) \land Clear(z, s) \rightarrow On(x, z, DO(MOVE(x, y, z), s))
\]

\[
On(x, y, s) \land Clear(x, s) \land Clear(z, s) \rightarrow \neg On(x, y, DO(MOVE(x, y, z), s))
\]

Effect of move changes on **Clear** relations

\[
On(x, y, s) \land Clear(x, s) \land Clear(z, s) \rightarrow Clear(y, DO(MOVE(x, y, z), s))
\]

\[
On(x, y, s) \land Clear(x, s) \land Clear(z, s) \land (z \neq Table) \rightarrow \neg Clear(z, DO(MOVE(x, y, z), s))
\]

Blocks world example. Frame axioms.

- **Frame axioms.**
 - Represent things that remain unchanged after an action.

On relations:

\[
On(u, v, s) \land (u \neq x) \land (v \neq y) \rightarrow On(u, v, DO(MOVE(x, y, z), s))
\]

Clear relations:

\[
Clear(u, s) \land (u \neq z) \rightarrow Clear(u, DO(MOVE(x, y, z), s))
\]
Planning in situation calculus

Planning problem:
- find a sequence of actions that lead to a goal

Planning in situation calculus is converted to the theorem proving problem

Goal state:
\[\exists s \ On(A, B, s) \land On(B, C, s) \land On(C, Table, s) \]

Possible inference approaches:
- Inference rule approach
- Resolution refutation

Plan (solution) is a byproduct of theorem proving.

Example: blocks world

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
<td>C</td>
</tr>
</tbody>
</table>

Initial state
- \(On(A, Table, s_0) \)
- \(On(B, Table, s_0) \)
- \(On(C, Table, s_0) \)
- \(Clear(A, s_0) \)
- \(Clear(B, s_0) \)
- \(Clear(C, s_0) \)
- \(Clear(Table, s_0) \)

Goal
- \(On(A, B, s) \)
- \(On(B, C, s) \)
- \(On(C, Table, s) \)
Planning in the blocks world.

Initial state (s0) s1

\[s_0 = \]

\[\begin{align*}
On(A, Table, s_0) & \quad Clear(A, s_0) & \quad Clear(Table, s_0) \\
On(B, Table, s_0) & \quad Clear(B, s_0) \\
On(C, Table, s_0) & \quad Clear(C, s_0)
\end{align*} \]

Action: \textit{MOVE (B, Table, C)}

\[s_1 = DO(MOVE (B, Table, C), s_0) \]

\[\begin{align*}
On(A, Table, s_1) & \quad Clear(A, s_1) & \quad Clear(Table, s_1) \\
On(B, C, s_1) & \quad Clear(B, s_1) \\
\neg On(B, Table, s_1) & \quad \neg Clear(C, s_1) \\
On(C, Table, s_1) & \quad \neg Clear(C, s_1)
\end{align*} \]

Planning in the blocks world.

Initial state (s0) s1 s2

\[s_1 = DO(MOVE (B, Table, C), s_0) \]

\[\begin{align*}
On(A, Table, s_1) & \quad Clear(A, s_1) & \quad Clear(Table, s_1) \\
On(B, C, s_1) & \quad Clear(B, s_1) \\
\neg On(B, Table, s_1) & \quad \neg Clear(C, s_1) \\
On(C, Table, s_1) & \quad \neg Clear(C, s_1)
\end{align*} \]

Action: \textit{MOVE (A, Table, B)}

\[s_2 = DO(MOVE (A, Table, B), s_1) = DO(MOVE (A, Table, B), DO(MOVE (B, Table, C), s_0)) \]

\[\begin{align*}
On(A, B, s_2) & \quad \neg On(A, Table, s_2) & \quad \neg Clear(B, s_2) \\
On(B, C, s_2) & \quad \neg On(B, Table, s_2) & \quad \neg Clear(C, s_2) \\
On(C, Table, s_2) & \quad Clear(A, s_2) & \quad Clear(Table, s_2)
\end{align*} \]
Planning in situation calculus.

Planning problem:
• Find a sequence of actions that lead to a goal
• Planning in situation calculus is converted to theorem proving.

• Problems with situation calculus:
 – Large search space
 – Large number of axioms to be defined for one action
 – Proof may not lead to the best (shortest) plan.

Planning problems

Properties of (real-world) planning problems:

• The description of the state of the world is very complex
• Many possible actions to apply in any step
• Actions are typically local
 – they affect only a small portion of a state description
• Goals are defined as conditions and refer only to a small portion of state
• Plans consists of a long sequence of actions

• The state space search and situation calculus frameworks may be too cumbersome and inefficient to represent and solve the planning problems
Situation calculus: problems

Frame problem refers to:

- The need to represent a large number of frame axioms

Solution: combine positive and negative effects in one rule

\[
On(u, v, DO(MOVE(x, y, z), s)) \iff \neg((u = x) \land (v = y)) \land On(u, v, s) \lor
\]

\[
\lor ((u = x) \land (v = z)) \land On(x, y, s) \land Clear(x, s) \land Clear(z, s)
\]

Inferential frame problem:

- We still need to derive properties that remain unchanged

Other problems:

- **Qualification problem** – enumeration of all possibilities under which an action holds
- **Ramification problem** – enumeration of all inferences that follow from some facts

Solutions

- **Complex state description and local action effects:**
 - avoid the enumeration and inference of every state component, focus on changes only

- **Many possible actions:**
 - Apply actions that make progress towards the goal
 - Understand what the effect of actions is and reason with the consequences

- **Sequences of actions in the plan can be too long:**
 - Many goals consists of independent or nearly independent sub-goals
 - Allow goal decomposition & divide and conquer strategies
STRIPS framework

• Defines a restricted version of the FOL representation language as compared to the situation calculus

Advantage: leads to more efficient planning algorithms.
– State-space search with structured representations of states, actions and goals
– Action representation avoids the frame problem

STRIPS planning problem:
• much like a standard search (planning) problem;

STRIPS planner

• States:
 – conjunction of literals, e.g. On(A,B), On(B,Table), Clear(A)
 – represent facts that are true at a specific point in time

• Actions (operators):
 – Action: Move (x,y,z)
 – Preconditions: conjunctions of literals with variables
 \[On(x, y), Clear(x), Clear(z) \]
 – Effects. Two lists:
 • Add list: On(x, z), Clear(y)
 • Delete list: On(x, y), Clear(z)
 • Everything else remains untouched (is preserved)
STRIPS planning

Operator: Move (x, y, z)
- Preconditions: On(x, y), Clear(x), Clear(z)
- Add list: On(x, z), Clear(y)
- Delete list: On(x, y), Clear(z)

Initial state:
- Conjunction of literals that are true

Goals in STRIPS:
- A goal is a partially specified state
- Is defined by a conjunction of ground literals
 - No variables allowed in the description of the goal

Example:
\[\text{On}(A, B) \land \text{On}(B, C) \]
Search in STRIPS

Objective:
Find a sequence of operators (a plan) from the initial state to the state satisfying the goal

Two approaches to build a plan:
- **Forward state space search (goal progression)**
 - Start from what is known in the initial state and apply operators in the order they are applied
- **Backward state space search (goal regression)**
 - Start from the description of the goal and identify actions that help to reach the goal

Forward search (goal progression)

- Idea: Given a state s
 - Unify the preconditions of some operator a with s
 - Add and delete sentences from the add and delete list of an operator a from s to get a new state (can be repeated)

![Diagram](image)
Forward search (goal progression)

- Use operators to generate new states to search
- Check new states whether they satisfy the goal

Search tree:

Initial state

A B C

Move (A, Table, B)

Move (B, Table, C)

Move (A, Table, C)

Move (A, Table, B)

Goal (G)

New goal (G')

On (A, Table)
Clear (B)
Clear (A)
On (B, C)
On (C, Table)

precondition
add

Mapped from G

Backward search (goal regression)

Idea: Given a goal G

- Unify the add list of some operator a with a subset of G
- If the delete list of a does not remove elements of G, then the goal regresses to a new goal G' that is obtained from G by:
 - deleting add list of a
 - adding preconditions of a

Goal (G)

On (A, B)
On (B, C)
On (C, Table)
Backward search (goal regression)

- Use operators to generate new goals
- Check whether the initial state satisfies the goal

Search tree:

![Search tree diagram](image)

State-space search

- **Forward and backward state-space planning approaches:**
 - Work with strictly linear sequences of actions

- **Disadvantages:**
 - They cannot take advantage of the problem decompositions in which the goal we want to reach consists of a set of independent or nearly independent sub-goals
 - Action sequences cannot be built from the middle
 - No mechanism to represent least commitment in terms of the action ordering