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Limitations of propositional logic

World we want to represent and reason about consists of a 
number of objects with variety of properties and relations 
among them

Propositional logic:
• Represents statements about the world without reflecting this 

structure and without modeling these entities explicitly
Consequence:
• some knowledge is hard or impossible to encode in the 

propositional logic.
• Two cases that are hard to represent:

– Statements about similar objects, relations
– Statements referring to groups of objects.
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First-order logic (FOL)

• More expressive than propositional logic

• Eliminates  deficiencies of PL by:
– Representing objects, their properties, relations and 

statements about them;
– Introducing variables that refer to an arbitrary objects and 

can be substituted by a specific object
– Introducing quantifiers allowing us to make statements 

over groups objects without the need to represent each of 
them separately  
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Logic
Logic is defined by:
• A set of sentences

– A sentence is constructed from a set of primitives according 
to syntax rules.

• A set of interpretations
– An interpretation gives a semantic to primitives. It associates 

primitives with objects, values in the real world.
• The valuation (meaning) function V

– Assigns a truth value to a given  sentence under some 
interpretation

interpretasentence: ×V },{tion FalseTrue→
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First-order logic. Syntax.

Term - syntactic entity for representing objects

Terms in FOL:
• Constant symbols: represent specific objects

– E.g. John, France, car89
• Variables: represent objects of a certain type (type = domain of 

discourse)
– E.g. x,y,z

• Functions applied to one or more terms
– E.g. father-of (John)

father-of(father-of(John))
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First order logic. Syntax.

Sentences in FOL:
• Atomic sentences:

– A predicate symbol applied to 0 or more terms
Examples:
Red(car12), 
Sister(Amy, Jane);
Manager(father-of(John));

– t1 = t2  equivalence of terms
Example:
John = father-of(Peter)
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First order logic. Syntax.

Sentences in FOL:
• Complex sentences:
• Assume           are sentences in FOL. Then:

–
and

–
are sentences        

Symbols
- stand for the existential and the universal quantifier

)( ψφ ∧ )( ψφ ∨ ψ¬)( ψφ ⇔)( ψφ ⇒
ψφ ,

φx∀ φy∃

∀∃,
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Semantics. Interpretation. 
An interpretation  I is defined by a mapping to the domain of 

discourse D or relations on D
• domain of discourse: a set of objects in the world we represent 

and refer to; 
An interpretation I maps:
• Constant symbols to objects in D

I(John) = 
• Predicate symbols to relations, properties on D

• Function symbols to functional relations on D 

; ; ….

; ; ….

I(brother) =

I(father-of) =
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Semantics of sentences. 
Meaning (evaluation) function:

A predicate predicate(term-1, term-2, term-3, term-n) is true for 
the interpretation I , iff the objects referred to by term-1, term-
2, term-3, term-n are in the relation referred to by predicate

interpretasentence: ×V },{tion FalseTrue→

V(brother(John, Paul), I) = True

; ; ….I(brother) =

I(John) = I(Paul) =

brother(John, Paul) = in I(brother)
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Semantics of sentences.

• Equality

• Boolean expressions: standard

• Quantifications

V(term-1= term-2, I) = True
Iff I(term-1) =I(term-2)

V(sentence-1  ∨ sentence-2, I) = True
Iff V(sentence-1,I)= True or V(sentence-2,I)= True

E.g.

V(           , I) = True
Iff for all               V( ,I[x/d])= True
φx∀

Dd ∈ φ

V(           , I) = True
Iff there is a                , s.t.   V( ,I[x/d])= True
φx∃

Dd ∈ φ

substitution of x with d
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Representing knowledge in FOL
Example: 

Kinship domain

• Objects: people

• Properties: gender

• Relations: parenthood, brotherhood, marriage

• Functions: mother-of (one for each person x)

)(),( xFemalexMale

),(),,(),,( yxSpouseyxBrotheryxParent

)( xMotherOf

K,,, JaneMaryJohn
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Kinship domain in FOL

Relations between predicates and functions: write down what 
we know about them; how relate to each other.

• Male and female are disjoint categories

• Parent and child relations are inverse

• A grandparent is a parent of parent

• A sibling is another child of one’s parents

• And so on ….

),(),(),(, cpParentpgParentpcgtGrandparencg ∧∃⇔∀

),(),()(),(, ypParentxpParentpyxyxSiblingyx ∧∃∧≠⇔∀

),(),(, xyChildyxParentyx ⇔∀

)()( xFemalexMalex ¬⇔∀
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Knowledge engineering in FOL

1. Identify the problem/task you want to solve
2. Assemble the relevant knowledge
3. Decide on a vocabulary of predicates, functions, and 

constants
4. Encode general knowledge about the domain
5. Encode a description of the specific problem instance
6. Pose queries to the inference procedure and get answers
7. Debug the knowledge base
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The electronic circuits domain

One-bit full adder
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The electronic circuits domain

1. Identify the task
– Does the circuit actually add properly? (circuit 

verification)

2. Assemble the relevant knowledge
– Composed of wires and gates; Types of gates (AND, OR, 

XOR, NOT) 
– Irrelevant attributes: size, shape, color, cost of gates

3. Decide on a vocabulary
• Alternatives:

Type(X1) = XOR
Type(X1, XOR)
XOR(X1)
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The electronic circuits domain

4. Encode general knowledge of the domain
– ∀t1,t2 Connected(t1, t2) ⇒ Signal(t1) = Signal(t2)
– ∀t Signal(t) = 1 ∨ Signal(t) = 0
– 1 ≠ 0
– ∀t1,t2 Connected(t1, t2) ⇒ Connected(t2, t1)

– ∀g Type(g) = OR ⇒ Signal(Out(1,g)) = 1 ⇔ ∃n 
Signal(In(n,g)) = 1

– ∀g Type(g) = AND ⇒ Signal(Out(1,g)) = 0 ⇔ ∃n 
Signal(In(n,g)) = 0

– ∀g Type(g) = XOR ⇒ Signal(Out(1,g)) = 1 ⇔
Signal(In(1,g)) ≠ Signal(In(2,g))

– ∀g Type(g) = NOT ⇒ Signal(Out(1,g)) ≠ Signal(In(1,g))
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The electronic circuits domain
5. Encode the specific problem instance

Type(X1) = XOR Type(X2) = XOR
Type(A1) = AND Type(A2) = AND
Type(O1) = OR
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The electronic circuits domain
5. Encode the specific problem instance

Connected(Out(1,X1),In(1,X2))
Connected(In(1,C1),In(1,X1))
Connected(Out(1,X1),In(2,A2))
Connected(In(1,C1),In(1,A1))
Connected(Out(1,A2),In(1,O1)) 
Connected(In(2,C1),In(2,X1))

…
�
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The electronic circuits domain

6. Pose queries to the inference procedure
What are the possible sets of values of all the terminals for 

the adder circuit? 

∃i1,i2,i3,o1,o2 Signal(In(1, C1)) = i1 ∧ Signal(In(2,C1)) = i2 ∧ Signal(In(3,C1)) = i3
∧ Signal(Out(1,C1)) = o1 ∧ Signal(Out(2,C1)) = o2

7. Debug the knowledge base
May have omitted assertions like 1 ≠ 0
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Inference in First order logic
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Logical inference in FOL

Logical inference problem:
• Given a knowledge base KB (a set of sentences) and a 

sentence     , does the KB semantically entail     ?

In other words:  In all interpretations in which sentences in the 
KB are true, is also     true?

Logical inference problem in the first-order logic is 
undecidable !!!. No procedure that can decide the entailment 
for all possible input sentences in a finite number of steps.

α=|KB ?

α

αα
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Logical inference problem in the Propositional 
logic

Computational procedures that answer: 

Three approaches:
• Truth-table approach
• Inference rules
• Conversion to the inverse SAT problem

– Resolution-refutation 

α=|KB ?
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Inference in FOL: Truth table

• Is the Truth-table approach a viable approach for the FOL?

?
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Inference in FOL: Truth table approach

• Is the Truth-table approach a viable approach for the FOL?

• NO! 
• Why? 
• It would require us to enumerate and list all possible 

interpretations I 
• I = (assignments of symbols to objects, predicates to relations 

and functions to relational mappings)
• Simply there are too many interpretations

?
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Inference in FOL: Inference rules

• Is the Inference rule approach a viable approach for the FOL?

?
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Inference in FOL: Inference rules

• Is the Inference rule approach a viable approach for the FOL?

• Yes.
• The inference rules represent sound inference patterns one can 

apply to sentences in the KB
• What is derived follows from the KB
• Caveat: 

– we need to add rules for handling quantifiers

?
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Inference rules

• Inference rules from the propositional logic:
– Modus ponens

– Resolution

– and others: And-introduction, And-elimination, Or-
introduction, Negation elimination

• Additional inference rules are needed for sentences with 
quantifiers and variables
– Must involve variable substitutions

B
ABA ,⇒

CA
CBBA

∨
∨¬∨ ,
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Variable substitutions

• Variables in the sentences can be substituted with terms.
(terms = constants, variables, functions)

• Substitution:
– Is a mapping from variables to terms

– Application of the substitution to sentences

},/,/{ 2211 Ktxtx

),()),(},/,/({ PamSamLikesyxLikesPamySamxSUBST =

))(,(
)),()},(/,/({

JohnfatherofzLikes
yxLikesJohnfatherofyzxSUBST =
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Inference rules for quantifiers

• Universal elimination

– substitutes a variable with a constant symbol
• Example:

)(
)(

a
xx

φ
φ∀

a - is a constant symbol

),( IceCreamxLikesx∀

),( IceCreamBenLikes
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Inference rules for quantifiers
• Existential elimination

– Substitutes a variable with a constant symbol that does not 
appear elsewhere in the KB

• Examples:
•

• ∃x Crown(x) ∧ OnHead(x,John)
Crown(C1) ∧ OnHead(C1,John)

)(
)(

a
xx

φ
φ∃

),( VictimxKillx∃ ),( VictimMurdererKill

Special constant called Skolem constant 
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Reduction to propositional inference

Suppose the KB contains just the following:
∀x King(x) ∧ Greedy(x) ⇒ Evil(x)
King(John)
Greedy(John)
Brother(Richard,John)

• Instantiating the universal sentence in all possible ways, we have:
King(John) ∧ Greedy(John) ⇒ Evil(John)
King(Richard) ∧ Greedy(Richard) ⇒ Evil(Richard)
King(John)
Greedy(John)
Brother(Richard,John)�

• The new KB is propositionalized: proposition symbols are

King(John), Greedy(John), Evil(John), King(Richard), etc.
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Reduction contd.

• Every FOL KB can be propositionalized so as to preserve 
entailment

• (A ground sentence is entailed by new KB iff entailed by 
original KB)

• Idea of the inference:
– propositionalize KB and query, apply resolution, return 

result
• Problem: with function symbols, there are infinitely many 

ground terms,
– e.g., Father(Father(Father(John)))
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Reduction contd.

Theorem: Herbrand (1930). If a sentence α is entailed by an 
FOL KB, it is entailed by a finite subset of the 
propositionalized KB

Idea: For n = 0 to ∞ do
create a propositional KB by instantiating with depth-$n$ 
terms
see if α is entailed by this KB

Problem: works if α is entailed, loops if α is not entailed

Theorem: Turing (1936), Church (1936) Entailment for FOL is 
semidecidable (algorithms exist that say yes to every entailed 
sentence, but no algorithm exists that also says no to every 
nonentailed sentence.)


