Planning problems

Properties of (real-world) planning problems:

• The description of the **state of the world is very complex**
• **Many possible actions** to apply in any step
• **Actions are typically local**
 – they affect only a small portion of a state description
• **Goals** are defined as conditions and **refer only to a small portion of state**
• Plans consists of a **long sequence of actions**

• The state space search and situation calculus frameworks may be too cumbersome and inefficient to represent and solve the planning problems
STRIPS framework

- Defines a restricted version of the FOL representation language as compared to the situation calculus

Advantage: leads to more efficient planning algorithms.
 - State-space search with structured representations of states, actions and goals
 - Action representation avoids the frame problem

STRIPS planning problem:
- much like a standard search (planning) problem;

<table>
<thead>
<tr>
<th>STRIPS planner</th>
</tr>
</thead>
<tbody>
<tr>
<td>States:</td>
</tr>
<tr>
<td>– conjunction of literals, e.g. On(A,B), On(B,Table), Clear(A)</td>
</tr>
<tr>
<td>– represent facts that are true at a specific point in time</td>
</tr>
<tr>
<td>Actions (operators):</td>
</tr>
<tr>
<td>– Action: Move (x,y,z)</td>
</tr>
<tr>
<td>– Preconditions: conjunctions of literals with variables</td>
</tr>
<tr>
<td>On(x,y), Clear(x), Clear(z)</td>
</tr>
<tr>
<td>– Effects. Two lists:</td>
</tr>
<tr>
<td>- Add list: On(x,z), Clear(y)</td>
</tr>
<tr>
<td>- Delete list: On(x,y), Clear(z)</td>
</tr>
<tr>
<td>- Everything else remains untouched (is preserved)</td>
</tr>
</tbody>
</table>
STRIPS planning

Operator: Move (x,y,z)

- **Preconditions:** On(x,y), Clear(x), Clear(z)
- **Add list:** On(x,z), Clear(y)
- **Delete list:** On(x,y), Clear(z)

```
<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>On(B,Table)</td>
<td>Clear(C)</td>
<td></td>
</tr>
</tbody>
</table>
```

```
<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>On(A,Table)</td>
<td>On(C,Table)</td>
<td>Clear(A)</td>
</tr>
<tr>
<td>Clear(A)</td>
<td>Clear(A)</td>
<td>Clear(B)</td>
</tr>
<tr>
<td>Clear(Table)</td>
<td>Clear(Table)</td>
<td></td>
</tr>
</tbody>
</table>
```

Initial state:

- Conjunction of literals that are true

Goals in STRIPS:

- A goal is a partially specified state
- Is defined by a conjunction of ground literals
 - No variables allowed in the description of the goal

Example:

\[On(A,B) \land On(B,C) \]
Search in STRIPS

Objective:
Find a sequence of operators (a plan) from the initial state to the state satisfying the goal

Two approaches to build a plan:
• **Forward state space search (goal progression)**
 - Start from what is known in the initial state and apply operators in the order they are applied
• **Backward state space search (goal regression)**
 - Start from the description of the goal and identify actions that help to reach the goal

Forward search (goal progression)

- Idea: Given a state s
 - Unify the preconditions of some operator a with s
 - Add and delete sentences from the add and delete list of an operator a from s to get a new state (can be repeated)
Forward search (goal progression)

- Use operators to generate new states to search
- Check new states whether they satisfy the goal

Search tree:

Initial state

Goal (G)

New goal (G’)

Backward search (goal regression)

Idea: Given a goal G

- Unify the add list of some operator a with a subset of G
- If the delete list of a does not remove elements of G, then the goal regresses to a new goal G’ that is obtained from G by:
 - deleting add list of a
 - adding preconditions of a
Backward search (goal regression)

- Use operators to generate new goals
- Check whether the initial state satisfies the goal

Search tree:

State-space search

- **Forward and backward state-space planning approaches:**
 - Work with strictly linear sequences of actions

- **Disadvantages:**
 - They cannot take advantage of the problem decompositions in which the goal we want to reach consists of a set of independent or nearly independent subgoals
 - Action sequences cannot be built from the middle
 - No mechanism to represent least commitment in terms of the action ordering
Divide and conquer

- **Divide and conquer strategy:**
 - divide the problem to a set of smaller sub-problems,
 - solve each sub-problem independently
 - combine the results to form the solution

In planning we would like to satisfy a set of goals

- **Divide and conquer in planning:**
 - Divide the planning goals along individual goals
 - Solve (find a plan for) each of them independently
 - Combine the plan solutions in the resulting plan

- Is it always safe to use divide and conquer?
 - No. There can be interacting goals.

Sussman’s anomaly.

- An example from the blocks world in which divide and conquer fails due to interacting goals

 - Initial state: C on A, B on A
 - Goal: A on B, C on B

 $$\text{On}(A, B)$$
 $$\text{On}(B, C)$$
1. Assume we want to satisfy $On(A, B)$ first

But now we cannot satisfy $On(B, C)$ without undoing $On(A, B)$

2. Assume we want to satisfy $On(B, C)$ first.

But now we cannot satisfy $On(A, B)$ without undoing $On(B, C)$
State space vs. plan space search

- An alternative to planning algorithms that search states (configurations of world)
- **Plan:** Defines a sequence of operators to be performed
- **Partial plan:**
 - plan that is not complete
 - Some plan steps are missing
 - some orderings of operators are not finalized
 - Only relative order is given
- **Benefits of working with partial plans:**
 - We do not have to build the sequence from the initial state or the goal
 - We do not have to commit to a specific action sequence
 - We can work on sub-goals individually (divide and conquer)
Plan transformation operators

Examples of:

- **Add an operator to a plan so that it satisfies some open condition**

- **Add link (+ instantiate)**

- **Order (reorder) operators**

\[
\text{Move}(A,x,B) \\
\text{Move}(C,A,D) \\
\text{Move}(C,y,D) \\
\text{Move}(A,H,B) \\
\text{Move}(C,A,D)
\]

Partial-order planners (POP)

- also called **Non-linear planners**
- Use STRIPS operators

Graphical representation of an operator \texttt{Move}(x,y,z)

\[
\text{On}(x,z) \quad \text{Clear}(y) \quad \text{add list} \\
\text{On}(x,y) \quad \text{Clear}(x) \quad \text{Clear}(z) \quad \text{preconditions}
\]

Delete list is not shown !!!

Illustration of a POP on the Sussman’s anomaly case
Partial order planning. Start and finish.

Goal

Open conditions: conditions yet to be satisfied
Partial order planning. Add operator.

We want to satisfy an open condition

Always select an operator that helps to satisfy one of the open conditions

Partial order planning. Add link.
Partial order planning. Add link.

Start

On(C, A) Clear(FI) On(A, FI) Clear(B) On(B, FI) Clear(C)

Move(A, y, B)

On(A, B) Clear(A) Clear(B)

Add link

Satisfies an open condition

Start

On(A, B) Clear(y)

Finish

On(A, B) On(B, C)

Satisfies an open condition

instantiate y/FI

On(A, B) Clear(y) On(A, y) Clear(B)

On(C, A) Clear(FI) On(A, FI) Clear(B) On(B, FI) Clear(C)
Partial order planning. Add operator.

Partial order planning. Add links.
Partial order planning. Interactions.

- Finish
 - On(A,B)
 - Clear(Fl)
- On(A,B)
- Clear(Fl)
- Move(A,Fl,B)
 - On(A,Fl)
 - Clear(B)
 - Clear(A)
 - Clear(B)
- Clear(Fl)
- On(B,C)
- On(C,A)
- Clear(Fl)
- Clear(C)
- On(A,Fli)
- Clear(B)
- Clear(B)
- On(B,Fli)
- Clear(C)

Start

Goal

A
B
C

Deletes Clear(B)
A was stacked on B

Partial order planning. Order operators.

- Finish
 - On(A,B)
 - Clear(Fl)
- On(A,B)
- Clear(Fl)
- Move(A,Fl,B)
 - On(A,Fl)
 - Clear(B)
 - Clear(A)
 - Clear(B)
 - Clear(B)
- On(B,Fli)
- Clear(C)
- On(B,C)
- On(C,A)
- Clear(Fl)
- Clear(C)
- On(A,Fli)
- Clear(B)
- Clear(B)
- On(B,Fli)
- Clear(C)
- Clear(B)
- Clear(B)

Start

Goal

A
B
C

Move(B,Fli,C) comes before Move(A,Fli,B)
Partial order planning. Add operator

Partial order planning. Add links.
Partial order planning. Threats.

Partial order planning. Order operators.
POP planning. Directions.

Consistent POP plan.
Partial order planning. Result plan.

Plan: a topological sort of a graph

- Move(A, Fl, B)
- Move(B, Fl, C)
- Move(C, A, Fl)

Partial order planning.

- **Remember** we search the space of partial plans

- POP: **is sound and complete**