
1

CS 2740 Knowledge representation M. Hauskrecht

CS 2740 Knowledge representation
Lecture 21

Milos Hauskrecht
milos@cs.pitt.edu
5329 Sennott Square

Semantic web 2.

CS 2740 Knowledge representation M. Hauskrecht

Semantic web
The Semantic Web provides a common framework that allows

data and knowledge to be shared and reused across
application, enterprise, and community boundaries.

The development of the Sematic web is a collaborative effort led
by W3C with participation from a large number of researchers
and industrial partners.

It defines standards for exchanging knowledge and for sharing
conceptualizations.

Basic standards:
• RDF - Resource Description Framework, representation of

information/data for the purpose of sharing
OWL – a language for sharing vocabularies, sets of terms
supporting web searches and other applications (a part of
RDF)

2

CS 2740 Knowledge representation M. Hauskrecht

Semantic web
In terms of the knowledge representation and reasoning:
• Represent the knowledge
• Support search queries on knowledge and matches
• Support inference
Differences from other KR systems:
• Multiple sources of information and knowledge built for

potentially different purposes
• Ambiguities that may arise (the same term with two different

meanings or two different terms with the same meaning)
• Dynamically changing environment – knowledge is added at

fast pace so it should be robust to handle that

CS 2740 Knowledge representation M. Hauskrecht

Semantic web
Benefits:
• knowledge integration,
• knowledge storage,
• knowledge searching,
• and knowledge inference.

3

CS 2740 Knowledge representation M. Hauskrecht

Semantic web
Benefits:
• knowledge integration,
• knowledge storage,
• knowledge searching,
• and knowledge inference.

CS 2740 Knowledge representation M. Hauskrecht

Semantic web: knowledge integration
Benefit of large amounts of information and knowledge on the web stands and

falls on the data/knowledge integration
Technical challenges:
• Location: where the data/knowledge resides. The location of a Semantic Web

resource is defined by the Uniform Resource Identifier (URI). A URI is
simply a formatted string that identifies - via name, location, or any other
characteristic - a resource. A standard web link is a form of a URI. URI
allows us to label a Semantic Web source with a findable, unique location.

• Query Protocol: We need to interact with web resources. We need an
communication language. The protocol for the Semantic Web uses standards
such as http to form a flexible, easily understood, request/response exchange.

• Format: The data must be in a comprehensive and translatable format. The
Semantic Web uses a standard format - the OWL Web Ontology Language.
It is based on the Resource Description Framework (RDF) standard and
XML.

Technical challenges are resolved by standards

4

CS 2740 Knowledge representation M. Hauskrecht

Semantic web: knowledge integration
Other Challenges
• Timely, Authoritative: The data must be trusted and be up-to-date. It is

possible to have multiple answers to the same question. In addition,
information may get outdated. The Semantic Web lets you to deal directly
with the actual source to avoid the problem. You need not maintain
complex synchronization unless it is absolutely necessary due to
performance or other requirements.

The key challenge:
• Purpose: We have to align the data with our purpose. This may require

translation and modifications. It needs to fit your world view be it english,
medical, financial to name but a few. This is about getting right the
semantic. For example, we can tie person in one data source with
individual from another data source - they represent the same meaning or a
related meaning.

• Semantic web standards do enable easier and more efficient data sharing
and integration but really reach their full potential by the ability to align
purpose across different data sources.

CS 2740 Knowledge representation M. Hauskrecht

Semantic web:knowledge integration
Three steps of integration:
• Aggregation:

– Combines the Semantic Web data sources into one
unified, virtual data source.

• Mapping/Binding:
– Associates similar references with each other and builds

upon data in existing references. For example synonyms
are identified.

• Rules:
– Enables more sophisticated alignment and enrichment

such as conditional logic that adds information based on
the condition of other data

5

CS 2740 Knowledge representation M. Hauskrecht

Semantic web: OWL
The Semantic Web is always written in the same language:
• The OWL Web Ontology Language

(http://www.w3.org/TR/owl-ref/)
The Web Ontology Language OWL is:
• a semantic markup language for publishing and sharing

ontologies on the World Wide Web.
• a vocabulary extension of RDF (the Resource Description

Framework)
OWL contains all the reference information to define any term

contained within
• it maintains its own definition of each and every term (it is self-

referential).

CS 2740 Knowledge representation M. Hauskrecht

Ontology
If more than one person is building a knowledge base,
they must be able to share the conceptualization.

• A conceptualization is a mapping from the problem domain
into the representation.

• A conceptualization specifies:
– What types of objects are being modeled
– The vocabulary for specifying objects, relations and

properties
– The meaning or intention of the relations or properties

• An ontology is a specification of a conceptualization.

6

CS 2740 Knowledge representation M. Hauskrecht

Semantic web: OWL
- <owl:Ontology rdf:about="">
<rdfs:comment>This is a weather forecast ontology.</rdfs:comment>
<rdfs:label>Weather Site Ontology</rdfs:label>
</owl:Ontology>

<!-- Weather Observation Class -->
- <owl:Class rdf:ID="WeatherObservation">

<rdfs:label>Weather Observation</rdfs:label>
- <rdfs:subClassOf>
- <owl:Restriction>
<owl:onProperty rdf:resource="#hasLocation" />
<owl:cardinality>1</owl:cardinality>
</owl:Restriction>
</rdfs:subClassOf>

- <rdfs:subClassOf>
- <owl:Restriction>
<owl:onProperty rdf:resource="#hasTime" />
<owl:cardinality>1</owl:cardinality>
</owl:Restriction>
</rdfs:subClassOf>

…

Ontology
definition

Class
definition

Class
properties

CS 2740 Knowledge representation M. Hauskrecht

Semantic web: OWL
…
<rdfs:subClassOf>
- <owl:Restriction>
<owl:onProperty rdf:resource="#hasTemperature" />
<owl:cardinality>1</owl:cardinality>
</owl:Restriction>
</rdfs:subClassOf>

- <rdfs:subClassOf>
- <owl:Restriction>
<owl:onProperty rdf:resource="#hasHumidity" />
<owl:cardinality>1</owl:cardinality>
</owl:Restriction>
</rdfs:subClassOf>

- <rdfs:subClassOf>
- <owl:Restriction>
<owl:onProperty rdf:resource="#hasWindSpeed" />
<owl:cardinality>1</owl:cardinality>
</owl:Restriction>
</rdfs:subClassOf>

</owl:Class>

Class
properties

7

CS 2740 Knowledge representation M. Hauskrecht

Semantic web: OWL
<!-- Location Class -->
- <owl:Class rdf:ID="Location">

<rdfs:label>Location: City, State</rdfs:label>
- <rdfs:subClassOf>
- <owl:Restriction>
<owl:onProperty rdf:resource="#hasState" />
<owl:cardinality>1</owl:cardinality>
</owl:Restriction>
</rdfs:subClassOf>

- <rdfs:subClassOf>
- <owl:Restriction>
<owl:onProperty rdf:resource="#hasCity" />
<owl:cardinality>1</owl:cardinality>
</owl:Restriction>
</rdfs:subClassOf>
</owl:Class>

- <owl:DatatypeProperty rdf:ID="hasState">
<rdfs:label>The State that this location is in. Abbreviated.</rdfs:label>
<rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#string" />
</owl:DatatypeProperty>

Another
class
definition

CS 2740 Knowledge representation M. Hauskrecht

Semantic web: OWL
<!-- Location Class -->
- <owl:Class rdf:ID="Location">

<rdfs:label>Location: City, State</rdfs:label>
- <rdfs:subClassOf>
- <owl:Restriction>
<owl:onProperty rdf:resource="#hasState" />
<owl:cardinality>1</owl:cardinality>
</owl:Restriction>
</rdfs:subClassOf>

- <rdfs:subClassOf>
- <owl:Restriction>
<owl:onProperty rdf:resource="#hasCity" />
<owl:cardinality>1</owl:cardinality>
</owl:Restriction>
</rdfs:subClassOf>
</owl:Class>

- <owl:DatatypeProperty rdf:ID="hasState">
<rdfs:label>The State that this location is in. Abbreviated.</rdfs:label>
<rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#string" />
</owl:DatatypeProperty>

Another
class
definition

hasState
property
datatype

8

CS 2740 Knowledge representation M. Hauskrecht

Semantic web: OWL
<!-- Precipitation Class -->
- <owl:Class rdf:ID="Precipitation">
<rdfs:label>Precipitation Condition</rdfs:label>

- <owl:oneOf rdf:parseType="Collection">
<Precipitation rdf:about="#Snow" />
<Precipitation rdf:about="#Rain" />
<Precipitation rdf:about="#Thunderstorm" />
<Precipitation rdf:about="#None" />
</owl:oneOf>
</owl:Class>

CS 2740 Knowledge representation M. Hauskrecht

Semantic web: OWL

<!-- Properties -->
- <owl:ObjectProperty rdf:ID="hasLocation">

<rdfs:label>Location of observation.</rdfs:label>
<rdfs:range rdf:resource="#Location" />
</owl:ObjectProperty>

- <owl:DatatypeProperty rdf:ID="hasTime">
<rdfs:label>Date and time of observation.</rdfs:label>
<rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#string" />
</owl:DatatypeProperty>

- <owl:DatatypeProperty rdf:ID="hasTemperature">
<rdfs:label>Temperature, farenheit</rdfs:label>
<rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#float" />
</owl:DatatypeProperty>

- <owl:DatatypeProperty rdf:ID="hasHumidity">
<rdfs:label>Relative humidity, percent.</rdfs:label>
<rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#float" />
</owl:DatatypeProperty>

Properties
for Weather
Observation class

9

CS 2740 Knowledge representation M. Hauskrecht

Semantic web: OWL
Example: Aggregating knowledge from multiple ontologies

<owl:Ontology rdf:about="">
<rdfs:comment>This is the project assignment client ontology</rdfs:comment>
<rdfs:label>Project Assignment Client Ontology</rdfs:label>
<owl:imports rdf:resource="http://localhost/contractors/ont/contractor-ont.owl"

/>
<owl:imports rdf:resource="http://localhost/weather/ont/weather-ont.owl" />
<owl:imports rdf:resource="http://localhost/projectsite/ont/project-ont.owl" />
</owl:Ontology>

New ‘Project assignment’ ontology
Uses 3 ontologies: weather, project,
contractor

CS 2740 Knowledge representation M. Hauskrecht

Semantic web: OWL
<!-- Weather -->
- <owl:Class rdf:ID="CurrentWeather">
<rdfs:subClassOf rdf:resource="http://localhost/weather/ont/weather-

ont.owl#WeatherObservation" />
<owl:equivalentClass rdf:resource="http://localhost/weather/ont/weather-

ont.owl#WeatherObservation" />
- <rdfs:subClassOf>
- <owl:Restriction>
<owl:onProperty rdf:resource="#hasTemperature" />
<owl:cardinality>1</owl:cardinality>
</owl:Restriction>
</rdfs:subClassOf>

- <rdfs:subClassOf>
- <owl:Restriction>
<owl:onProperty rdf:resource="#forCity" />
<owl:cardinality>1</owl:cardinality>
</owl:Restriction>
</rdfs:subClassOf>

…
</owl:Class>

Class Current Weather
in the new Ontology:
equivalent class
Weather Observation

10

CS 2740 Knowledge representation M. Hauskrecht

Semantic web: OWL
<!-- Weather -->
- <owl:Class rdf:ID="CurrentWeather">
<rdfs:subClassOf rdf:resource="http://localhost/weather/ont/weather-

ont.owl#WeatherObservation" />
<owl:equivalentClass rdf:resource="http://localhost/weather/ont/weather-

ont.owl#WeatherObservation" />
- <rdfs:subClassOf>
- <owl:Restriction>
<owl:onProperty rdf:resource="#hasTemperature" />
<owl:cardinality>1</owl:cardinality>
</owl:Restriction>
</rdfs:subClassOf>

- <rdfs:subClassOf>
- <owl:Restriction>
<owl:onProperty rdf:resource="#forCity" />
<owl:cardinality>1</owl:cardinality>
</owl:Restriction>
</rdfs:subClassOf>

…
</owl:Class>

Different properties as used
for the weather observation
class before. Temperature,
for state, for city, is hot, is dry

CS 2740 Knowledge representation M. Hauskrecht

Semantic web: OWL

<owl:DatatypeProperty rdf:ID="hasTemperature">
<rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#string" />
<owl:equivalentProperty rdf:resource="http://localhost/weather/ont/weather-

ont.owl#hasTemperature" />
</owl:DatatypeProperty>

- <owl:DatatypeProperty rdf:ID="forCity">
<rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#string" />
</owl:DatatypeProperty>

- <owl:DatatypeProperty rdf:ID="forState">
<rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#string" />
</owl:DatatypeProperty>

- <owl:DatatypeProperty rdf:ID="isWarm">
<rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#boolean" />
</owl:DatatypeProperty>

- <owl:DatatypeProperty rdf:ID="isDry">
<rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#boolean" />
</owl:DatatypeProperty>

11

CS 2740 Knowledge representation M. Hauskrecht

Semantic web: aggregation of sources
• OWL contains all the reference information to define any term

contained within - it maintains its own definition of each and
every term (it is self-referential).

• Consequence: Aggregation of multiple sources is easy.
– We can simply add any OWL data to each other - in any

combination or order . Unlike relational databases, the
structure (i.e. schema) or ontology is just another set of
statements within a Semantic Web data source. You can
simply combine multiple OWL sources together. You cannot
just pour relational database data into another database
without significant work behind behind the scenese with the
databases schemas to clean up conflicts and the like.

With OWL, you can simply query the knowledge structure the
same way you query any instance data. An OWL query doesn't
differentiate between the structure and the instance data.

CS 2740 Knowledge representation M. Hauskrecht

Semantic web: mapping/binding
• More than one ontology may exist
• The same term may have multiple entries but it really can mean

the same thing at the end
• Mapping allows us to accomplish two unifying actions;

– declaring synonyms and
– establishing relationships.

Synonyms: we can declare the two terms used in two different
resources to be the same.

Relations: inheritance relations among terms can be defined

12

CS 2740 Knowledge representation M. Hauskrecht

Semantic web: integration with rules
Rules enables more complex knowledge aggregation methods.
We can use if/then constructs to establish relationships and

groupings.
Rules can also add flexibility to your integration by handling

special cases.
– Example: the weather ontology contains temperatures

whereas the project ontology contains broader classifications
such as hot and cold. We can establish a rule to convert
certain temperatures to the correct hot or cold classification.

Rules can exist alongside with OWL as part of a the knowledge
base, or reside in the programs that manipulate the
Semantic Web.

CS 2740 Knowledge representation M. Hauskrecht

Semantic web
Benefits:
• knowledge integration,
• knowledge construction and storage,
• knowledge inference,
• and knowledge searching.

13

CS 2740 Knowledge representation M. Hauskrecht

Knowledge construction and storage
Knowledge is stored in databases:
• Originally one database was used by one or many applications
• Multiple databases can be used by multiple applications
Problem:
• Applications take advantage of pieces of knowledge stored in

databases
• Each application has its own view so that the knowledge in the

database is fragmented and relations are lost
Semantic web approach:
• Do not fragment data. Knowledge is built upon all data. A

central term is enriched with relations, attributes, constraints
defining its context. Relations and attributes are terms and
define semantic links in between objects (entities) instead of
just links as in the html.

CS 2740 Knowledge representation M. Hauskrecht

Knowledge construction and storage
Knowledge construction and enrichment is:
• Horizontal: add new attributes and peer relationships. Examples include

adding a birthday to person (new attribute) and adding a boss relationship
between two workers (new peer relationships)

• Vertical: via inheritance. Inheritance provides all the context of the base
term plus whatever else we want to add. E.g. a person has a name,
birthday, and sex. A worker is a type of person that also adds a workplace
and boss. An update to person, such as adding a birthplace, automatically
adds birthplace to all workers.

• Constraints: new constraints can be introduced to further refine the
context. For example parent is defined as a person with a daughter and/or a
son. Constraints can get quite rich with logic such as tall person is a person
with height greater than six feet.

• Distributed: build on knowledge anywhere in your network. knowledge
and data that resides elsewhere are referenced by its URI.

14

CS 2740 Knowledge representation M. Hauskrecht

Knowledge construction and storage
What knowledge can be expressed:
• Commonality: Declaring two data items equivalent simplifies data. This

could occur in the structural ontology level in declaring person and contractor
as the same. This also extends to specific instances. You can declare Joe Smith
at a given URI equal to J Smith at another URI. So simply declaring two items
equal adds knowledge. "equivalentClass“ keyword in OWL establishes a
connection between two unique URIs declaring them equal or synonyms.

• Inheritance: This adds knowledge in declaring that a data element is a form
of another data element but not exactly equivalent. One element is a subset of
the other. All people have names and addresses but not all people are e.g.
managers. Thus we could declare a manager a type of person but still distinct
from people. This clarifies a term without duplicating similar information.
Inheritance is implemented using subClassOf keyword. .

• Restrictions: Restrictions define a term relative to other terms or limits. For
example, an available contractor must have the constraint of availability. This
adds to the useful vocabulary by adding a new term that is a condition of an
existing term.

CS 2740 Knowledge representation M. Hauskrecht

Knowledge construction and storage

What knowledge can be expressed:
• Properties: data elements that describe another data element. A person has

an property called "livesAt" populated with her home address. Similarly, the
person may have an additional property called "worksAt" populated with her
work address.

• Collections: abstractions built by combining terms together. The concept
referred to by a particular term may be related to several other terms
simultaneously. For instance, the term "contractor" could describe a
collection of things called "skilled manual laborers" and also things called
"construction workers".

• Rules: Rules are used to wrest the knowledge out of particularly complex
situations - ones that can't simply be addressed with the methods above.
They allow us to consider one term for a given condition that then drives
another term. It allows if/then constructs in defining the context of a given
term.

15

CS 2740 Knowledge representation M. Hauskrecht

Semantic web
Benefits:
• knowledge integration,
• knowledge construction and storage,
• knowledge searching,
• and knowledge inference.

CS 2740 Knowledge representation M. Hauskrecht

Knowledge searching
Getting answers, is the end goal of any knowledge base or data formation.
Two ways to search the data/knowledge bases:
• keyword matching

– It can give useful results if the data pattern is unusual and dissimilar to other
data patterns. Many matches (e.g. 10,000 hits) on more common patterns are
no good. Keyword matching is also weak at asking specific, detailed
questions like what is the population of Utah in 1982. Works even if
dynamically keep changing the knowledge base.

• relational database queries
– Relies on a standard language (SQL) that spans multiple database

technologies and allows quite a bit of power. However, the queries are tightly
taylored to the structure of each individual database, which when using keys,
foreign keys, indexes etc. can quickly get quite complex. It is great for a well
known structure but hardly useful for a dynamically changing and large
knowledgebase.

• Semantic web is a compromise in between the two.

16

CS 2740 Knowledge representation M. Hauskrecht

Knowledge searching
Semantic web supports several query languages that enable

powerful and flexible interrogation of resources. It provides
structure to ask direct questions but also enough flexibility that
you need not be an expert as to a specific Semantic Web
formation.

Queries have the same structure whether we are asking a question
regarding the knowledge structure (i.e. is a person the same as
a contractor?) and/or instance data (i.e. is John a contractor?).

A search query is nothing more than knowledge reflecting a
certain interest or perspective. So queries may be directed into
the ontology.

You can keep asking the same question, while the underlying data
is dramatically changing through the integration of new data
sources, and continually receive a better answer.

CS 2740 Knowledge representation M. Hauskrecht

Semantic web
Benefits:
• knowledge integration,
• knowledge construction and storage,
• knowledge searching,
• and knowledge inference.

17

CS 2740 Knowledge representation M. Hauskrecht

Knowledge inference
Search identifies and returns answers that are explicitly

represented in available knowledge resources
Inference addresses the questions for which the answer is not

directly available and encoded
• This is were KR&R experience helps
Problems:
• Synonyms (are these two things equivalent?)
• Ambiguities - different contexts for the same term may lead to

different and contradictory answers

CS 2740 Knowledge representation M. Hauskrecht

Knowledge perspectives
The Semantic Web enables you to have knowledge your own way.

It does not force you to adopt someone else's view of data or
knowledge.

This is accomplished using:
• Integration of knowledge and existing resources
• Construction of a new knowledge
• Support for inferences
Basically the options you have are:
• Start from scratch and build everything you need for your

application
• Tap on resources available that you can tailor to your needs,

you reuse not only the information, you also can reuse and
integrate the semantics

