CS 2740 Knowledge Representation Lecture 2

Propositional logic

Milos Hauskrecht

milos@cs.pitt.edu 5329 Sennott Square

CS 2740 Knowledge Representation

M. Hauskrecht

Knowledge representation

- The objective of knowledge representation is to express the knowledge about the world in a computer-tractable form
- Key aspects of knowledge representation languages:
 - Syntax: describes how sentences are formed in the language
 - Semantics: describes the meaning of sentences, what is it the sentence refers to in the real world
 - Computational aspect: describes how sentences and objects are manipulated in concordance with semantical conventions

Many KB systems rely on some variant of logic

CS 2740 Knowledge Representation

Logic

- Logic:
 - defines a formal language for logical reasoning
- It gives us a tool that helps us to understand how to construct a valid argument
- Logic Defines:
 - the meaning of statements
 - the rules of logical inference

CS 2740 Knowledge Representation

M. Hauskrecht

Logic

A formal language for expressing knowledge and ways of reasoning.

Logic is defined by:

- A set of sentences
 - A sentence is constructed from a set of primitives according to syntax rules.
- A set of interpretations
 - An interpretation gives a semantic to primitives. It associates primitives with values.
- The valuation (meaning) function V
 - Assigns a value (typically the truth value) to a given sentence under some interpretation

V: sentence \times interpretation $\rightarrow \{True, False\}$

CS 2740 Knowledge Representation

- The simplest logic
- Definition:
 - A proposition is a statement that is either true or false.
- Examples:
 - Pitt is located in the Oakland section of Pittsburgh.
 - (T)

CS 2740 Knowledge Representation

M. Hauskrecht

Propositional logic

- The simplest logic
- Definition:
 - A proposition is a statement that is either true or false.
- Examples:
 - Pitt is located in the Oakland section of Pittsburgh.
 - (T)
 - -5+2=8.
 - ?

- The simplest logic
- Definition:
 - A proposition is a statement that is either true or false.
- Examples:
 - Pitt is located in the Oakland section of Pittsburgh.
 - (T)
 - -5+2=8.
 - (F)
 - It is raining today.
 - ?

CS 2740 Knowledge Representation

M. Hauskrecht

Propositional logic

- The simplest logic
- Definition:
 - A proposition is a statement that is either true or false.
- Examples:
 - Pitt is located in the Oakland section of Pittsburgh.
 - (T)
 - -5+2=8.
 - (F)
 - It is raining today.
 - (either T or F)

CS 2740 Knowledge Representation

- Examples (cont.):
 - How are you?

• ?

CS 2740 Knowledge Representation

M. Hauskrecht

Propositional logic

- Examples (cont.):
 - How are you?
 - a question is not a proposition
 - x + 5 = 3
 - ?

- Examples (cont.):
 - How are you?
 - a question is not a proposition
 - -x+5=3
 - since x is not specified, neither true nor false
 - 2 is a prime number.
 - ?

CS 2740 Knowledge Representation

M. Hauskrecht

Propositional logic

- Examples (cont.):
 - How are you?
 - a question is not a proposition
 - x + 5 = 3
 - since x is not specified, neither true nor false
 - 2 is a prime number.
 - (T)
 - She is very talented.
 - ?

CS 2740 Knowledge Representation

- Examples (cont.):
 - How are you?
 - a question is not a proposition
 - x + 5 = 3
 - since x is not specified, neither true nor false
 - 2 is a prime number.
 - (T)
 - She is very talented.
 - since she is not specified, neither true nor false
 - There are other life forms on other planets in the universe.
 - 9

CS 2740 Knowledge Representation

M. Hauskrecht

Propositional logic

- Examples (cont.):
 - How are you?
 - a question is not a proposition
 - -x+5=3
 - since x is not specified, neither true nor false
 - 2 is a prime number.
 - (T)
 - She is very talented.
 - since she is not specified, neither true nor false
 - There are other life forms on other planets in the universe.
 - either T or F

CS 2740 Knowledge Representation

Propositional logic. Syntax

- Formally propositional logic P:
 - Is defined by Syntax+interpretation+semantics of P

Syntax:

- Symbols (alphabet) in P:
 - Constants: True, False
 - Propositional symbols

Examples:

- P
- Pitt is located in the Oakland section of Pittsburgh.,
- It rains outside, etc.
- A set of connectives:

$$\neg, \land, \lor, \Rightarrow, \Leftrightarrow$$

CS 2740 Knowledge Representation

M. Hauskrecht

Propositional logic. Syntax

Sentences in the propositional logic:

- Atomic sentences:
 - Constructed from constants and propositional symbols
 - True, False are (atomic) sentences
 - P, Q or Light in the room is on, It rains outside are (atomic) sentences
- Composite sentences:
 - Constructed from valid sentences via connectives
 - If A, B are sentences then $\neg A \ (A \land B) \ (A \lor B) \ (A \Rightarrow B) \ (A \Leftrightarrow B)$ or $(A \lor B) \land (A \lor \neg B)$

are sentences

CS 2740 Knowledge Representation

Propositional logic. Semantics.

The semantic gives the meaning to sentences.

the semantics in the propositional logic is defined by:

- 1. Interpretation of propositional symbols and constants
 - Semantics of atomic sentences
- 2. Through the meaning of connectives
 - Meaning (semantics) of composite sentences

CS 2740 Knowledge Representation

M. Hauskrecht

Semantic: propositional symbols

A propositional symbol

- a statement about the world that is either true or false Examples:
 - Pitt is located in the Oakland section of Pittsburgh
 - It rains outside
 - Light in the room is on
- An interpretation maps symbols to one of the two values:
 True (T), or *False (F)*, depending on whether the symbol is satisfied in the world
 - **I**: Light in the room is on -> **True**, It rains outside -> **False**
 - I': Light in the room is on -> False, It rains outside -> False

CS 2740 Knowledge Representation

Semantic: propositional symbols

The **meaning (value)** of the propositional symbol for a specific interpretation is given by its interpretation

- I: Light in the room is on -> True, It rains outside -> False

 V(Light in the room is on, I) = True

 V(It rains outside, I) = False
- I': Light in the room is on -> False, It rains outside -> False V(Light in the room is on, I') = False

CS 2740 Knowledge Representation

M. Hauskrecht

Semantics: constants

- The meaning (truth) of constants:
 - True and False constants are always (under any interpretation) assigned the corresponding *True,False* value

$$V(True, \mathbf{I}) = \mathbf{True}$$

$$V(False, \mathbf{I}) = \mathbf{False}$$
For any interpretation \mathbf{I}

CS 2740 Knowledge Representation

Semantics: composite sentences.

- The meaning (truth value) of complex propositional sentences.
 - Determined using the standard rules of logic:

P	Q	$\neg P$	$P \wedge Q$	$P \vee Q$	$P \Rightarrow Q$	$P \Leftrightarrow Q$
False	False True	False True	True False False False	True True	True False True True	True False False True

CS 2740 Knowledge Representation

M. Hauskrecht

Translation

Assume the following sentences:

- It is not sunny this afternoon and it is colder than yesterday.
- We will go swimming only if it is sunny.
- If we do not go swimming then we will take a canoe trip.
- If we take a canoe trip, then we will be home by sunset.

Denote:

- p = It is sunny this afternoon
- q = it is colder than yesterday
- r = We will go swimming
- s= we will take a canoe trip
- t= We will be home by sunset

CS 2740 Knowledge Representation

Translation

Assume the following sentences:

- It is not sunny this afternoon and it is colder than yesterday. $\neg p \land q$
- We will go swimming only if it is sunny.
- If we do not go swimming then we will take a canoe trip.
- If we take a canoe trip, then we will be home by sunset.

Denote:

- p = It is sunny this afternoon
- q = it is colder than yesterday
- r = We will go swimming
- s= we will take a canoe trip
- t= We will be home by sunset

CS 2740 Knowledge Representation

M. Hauskrecht

Translation

Assume the following sentences:

- It is not sunny this afternoon and it is colder than yesterday. $\neg p \land q$
- We will go swimming only if it is sunny.

 $r \rightarrow p$

- If we do not go swimming then we will take a canoe trip.
- If we take a canoe trip, then we will be home by sunset.

Denote:

- p = It is sunny this afternoon
- q = it is colder than yesterday
- r = We will go swimming
- s= we will take a canoe trip
- t= We will be home by sunset

CS 2740 Knowledge Representation

Translation

Assume the following sentences:

- It is not sunny this afternoon and it is colder than yesterday. $\neg p \land q$
- We will go swimming only if it is sunny. $r \rightarrow p$
- If we do not go swimming then we will take a canoe trip. $\neg r \rightarrow s$
- If we take a canoe trip, then we will be home by sunset.

Denote:

- p = It is sunny this afternoon
- q = it is colder than yesterday
- r = We will go swimming
- s= we will take a canoe trip
- t= We will be home by sunset

CS 2740 Knowledge Representation

M. Hauskrecht

Translation

Assume the following sentences:

- It is not sunny this afternoon and it is colder than yesterday. $\neg p \land q$
- We will go swimming only if it is sunny. $r \rightarrow p$
- If we do not go swimming then we will take a canoe trip. $\neg r \rightarrow s$
- If we take a canoe trip, then we will be home by sunset. $S \rightarrow t$

Denote:

- p = It is sunny this afternoon
- q = it is colder than yesterday
- r = We will go swimming
- s= we will take a canoe trip
- t= We will be home by sunset

CS 2740 Knowledge Representation

Contradiction and Tautology

Some composite sentences may always (under any interpretation) evaluate to a single truth value:

Contradiction (always False)

$$P \wedge \neg P$$

Tautology (always True)

$$P \vee \neg P$$

$$\neg (P \vee Q) \Leftrightarrow (\neg P \wedge \neg Q)$$

$$\neg (P \wedge Q) \Leftrightarrow (\neg P \vee \neg Q)$$
DeMorgan's Laws

CS 2740 Knowledge Representation

M. Hauskrecht

Model, validity and satisfiability

- A model (in logic): An interpretation is a model for a set of sentences if it assigns true to each sentence in the set.
- A sentence is **satisfiable** if it has a model;
 - There is at least one interpretation under which the sentence can evaluate to True.
- A sentence is **valid** if it is *True* in all interpretations
 - i.e., if its negation is **not satisfiable** (leads to contradiction)

Р	Q	$P \vee Q$	$(P \lor Q) \land \neg Q$	$((P \lor Q) \land \neg Q) \Rightarrow P$
True	True	True	False	True
True False	False True	True True	True False	True True
False	False	False	False	True

CS 2740 Knowledge Representation

Model, validity and satisfiability

- A model (in logic): An interpretation is a model for a set of sentences if it assigns true to each sentence in the set.
- A sentence is **satisfiable** if it has a model;
 - There is at least one interpretation under which the sentence can evaluate to True.
- A sentence is **valid** if it is **True** in all interpretations
 - i.e., if its negation is **not satisfiable** (leads to contradiction)

P	Q	$P \vee Q$	$(P \lor Q) \land \neg Q$	$((P \lor Q) \land \neg Q) \Rightarrow P$
True	True	True	False	True
True	False		True	True
False	True		False	True
False	False		False	True

CS 2740 Knowledge Representation

M. Hauskrecht

Model, validity and satisfiability

- A model (in logic): An interpretation is a model for a set of sentences if it assigns true to each sentence in the set.
- A sentence is **satisfiable** if it has a model;
 - There is at least one interpretation under which the sentence can evaluate to True.
- A sentence is **valid** if it is *True* in all interpretations
 - i.e., if its negation is **not satisfiable** (leads to contradiction)

		Satis	fiable sentence	
Р	Q	$P \vee Q$	$(P \lor Q) \land \neg Q$	$((P \lor Q) \land \neg Q) \Rightarrow P$
True True False False	True False True False	True True True False	False True False False	True True True True

CS 2740 Knowledge Representation

Model, validity and satisfiability

- A model (in logic): An interpretation is a model for a set of sentences if it assigns true to each sentence in the set.
- A sentence is **satisfiable** if it has a model;
 - There is at least one interpretation under which the sentence can evaluate to True.
- A sentence is **valid** if it is *True* in all interpretations
 - i.e., if its negation is **not satisfiable** (leads to contradiction)

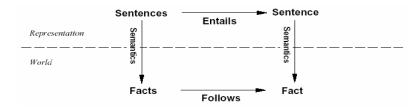
		Satis	fiable sentence	Valid sentence
P	Q	$P \vee Q$	$(P \lor Q) \land \neg Q$	$((P \lor Q) \land \neg Q) \Rightarrow P$
True True False False	True False True False	True	False True False False	True True True True

CS 2740 Knowledge Representation

M. Hauskrecht

Entailment

• **Entailment** reflects the relation of one fact in the world following from the others according to logic



- Entailment $KB = \alpha$
- Knowledge base KB entails sentence α if and only if α is true in all worlds where KB is true

CS 2740 Knowledge Representation

Sound and complete inference.

Inference is a process by which conclusions are reached.

• We want to implement the inference process on a computer !!

Assume an **inference procedure** *i* that

• derives a sentence α from the KB: $KB \vdash_i \alpha$

Properties of the inference procedure in terms of entailment

Soundness: An inference procedure is sound

If $KB \vdash_i \alpha$ then it is true that $KB \models \alpha$

• Completeness: An inference procedure is complete

If $KB = \alpha$ then it is true that $KB \vdash_i \alpha$

CS 2740 Knowledge Representation

M. Hauskrecht

Logical inference problem

Logical inference problem:

- Given:
 - a knowledge base KB (a set of sentences) and
 - a sentence α (called a theorem),
- Does a KB semantically entail α ? $KB \models \alpha$?

In other words: In all interpretations in which sentences in the KB are true, is also α true?

Question: Is there a procedure (program) that can decide this problem in a finite number of steps?

Answer: Yes. Logical inference problem for the propositional logic is **decidable**.

CS 2740 Knowledge Representation

Solving logical inference problem

In the following:

How to design the procedure that answers:

$$KB = \alpha$$
?

Three approaches:

- Truth-table approach
- Inference rules
- Conversion to the inverse SAT problem
 - Resolution-refutation

CS 2740 Knowledge Representation

M. Hauskrecht

Truth-table approach

Problem: $KB = \alpha$?

• We need to check all possible interpretations for which the KB is true (models of KB) whether α is true for each of them

Truth table:

• enumerates truth values of sentences for all possible interpretations (assignments of True/False values to propositional symbols)

Example:			K	B	α
	P	Q	$P \vee Q$	$P \Leftrightarrow Q$	$(P \lor \neg Q) \land Q$
	True True False False	True False True False	True	True False False True	True False False False

CS 2740 Knowledge Representation

Truth-table approach

Problem: $KB = \alpha$?

• We need to check all possible interpretations for which the KB is true (models of KB) whether α is true for each of them

Truth table:

• enumerates truth values of sentences for all possible interpretations (assignments of True/False to propositional symbols)

Example:	KB	α
P Q	$P \vee Q$ $P \Leftrightarrow Q$	$(P \lor \neg Q) \land Q$
True True True False False True False False	True False	True False False False

CS 2740 Knowledge Representation

M. Hauskrecht

Truth-table approach

Problem: $KB = \alpha$?

• We need to check all possible interpretations for which the KB is true (models of KB) whether α is true for each of them

Truth table:

 enumerates truth values of sentences for all possible interpretations (assignments of True/False to propositional symbols)

Ex	ample	:	K	В	α	
	P	Q	$P \vee Q$	$P \Leftrightarrow Q$	$(P \lor \neg Q) \land Q$	
	True	True	True	True	True	v
	True	False	True	False	False	
	False	True	True	False	False	
	False	False	False	True	False	

CS 2740 Knowledge Representation

Truth-table approach

A two steps procedure:

- 1. Generate table for all possible interpretations
- 2. Check whether the sentence α evaluates to true whenever KB evaluates to true

Example: $KB = (A \lor C) \land (B \lor \neg C)$ $\alpha = (A \lor B)$

A	В	C	$A \vee C$	$(B \vee \neg C)$	KB	α
True	True	True				
True	True	False				
True	False	True				
True	False	False				
False	True	True				
False	True	False				
False	False	True				
False	False	False				

CS 2740 Knowledge Representation

M. Hauskrecht

Truth-table approach

A two steps procedure:

- 1. Generate table for all possible interpretations
- 2. Check whether the sentence α evaluates to true whenever KB evaluates to true

Example: $KB = (A \lor C) \land (B \lor \neg C)$ $\alpha = (A \lor B)$

A	В	C	$A \lor C$	$(B \vee \neg C)$	KB	α
True	True	True	True	True	True	True
True	True	False	True	True	True	True
True	False	True	True	False	False	True
True	False	False	True	True	True	True
False	True	True	True	True	True	True
False	True	False	False	True	False	True
False	False	True	True	False	False	False
False	False	False	False	True	False	False

CS 2740 Knowledge Representation

Truth-table approach

A two steps procedure:

- 1. Generate table for all possible interpretations
- 2. Check whether the sentence α evaluates to true whenever KB evaluates to true

Example: $KB = (A \lor C) \land (B \lor \neg C)$ $\alpha = (A \lor B)$

A	В	С	$A \vee C$	$(B \lor \neg C)$	KB	α
True True True True False	True True False False True	True False True False True	True True True True True	True True False True True	True True False True True	True True True True True
False False	1	False True False	False True False	True False True	False False False	True False False

CS 2740 Knowledge Representation

M. Hauskrecht

Truth-table approach

$$KB = (A \lor C) \land (B \lor \neg C)$$
 $\alpha = (A \lor B)$

A	В	С	$A \lor C$	$(B \vee \neg C)$	KB	α
True	True	True	True	True	True	True
True	True	False	True	True	True	True
True	False	True	True	False	False	True
True	False	False	True	True	True	True
False	True	True	True	True	True	True
False	True	False	False	True	False	True
False	False	True	True	False	False	False
False	False	False	False	True	False	False

KB entails α

 The truth-table approach is sound and complete for the propositional logic!!

CS 2740 Knowledge Representation

Limitations of the truth table approach.

$$KB = \alpha$$
?

What is the computational complexity of the truth table approach?

• '

CS 2740 Knowledge Representation

M. Hauskrecht

Limitations of the truth table approach.

$$KB \mid = \alpha$$
 ?

What is the computational complexity of the truth table approach?

Exponential in the number of the proposition symbols

 2^n Rows in the table has to be filled

CS 2740 Knowledge Representation

Limitations of the truth table approach.

 $KB \mid = \alpha$?

What is the computational complexity of the truth table approach?

Exponential in the number of the proposition symbols

 2^n Rows in the table has to be filled

But typically only for a small subset of rows the KB is true

CS 2740 Knowledge Representation