CS 2740 Knowledge representation Lecture 19

Bayesian belief networks. Inference.

Milos Hauskrecht milos@cs.pitt.edu 5329 Sennott Square

CS 2740 Knowledge representation

Project proposals

Due: Tuesday, 27, 2007

1-2 pages long

Proposal

- Written proposal:
 - 1. Outline the problem you would like to tackle. Why is the problem important?
 - 2. Methods you plan to try and implement for the problem. References to previous work.
 - 3. How do you plan to test, run your solution.
 - 4. Schedule of work (approximate timeline of work)
- A 3-slide PPT presentation summarizing points 1-4

OpenCyc installation on linux

- 1. Note that OpenCyc for linux works with only some of our linux machines: arsenic and antimony were tested and work. So if you can't run it, try ssh arsenic.cs.pitt.edu or ssh antimony.cs.pitt.edu
- 2. Do tar -xvzf ~cmason/opencyc-1.0.2-linux.tgz from home directory.
- 3. Study the README.txt
- 3.1 Create a file named platform-override.txt under your opencyc-1.0/scripts directory. Type in "RH-ES3-x86_32" to your file.
- 3.2 Run ./run-cyc.sh from your opencyc-1.0/scripts directory. This should be able to build the OpenCyc system.

CS 2740 Knowledge representation

Bayesian belief network.

1. Directed acyclic graph

- **Nodes** = random variables
- Links = missing links encode independences.

Bayesian belief network

2. Local conditional distributions

• relate variables and their parents

Full joint distribution in BBNs

Full joint distribution is defined in terms of local conditional distributions (obtained via the chain rule):

$$\mathbf{P}(X_{1}, X_{2}, ..., X_{n}) = \prod_{i=1,..n} \mathbf{P}(X_{i} \mid pa(X_{i}))$$

Example:

Assume the following assignment of values to random variables B=T, E=T, A=T, J=T, M=F

Then its probability is:

$$P(B=T,E=T,A=T,J=T,M=F) = P(B=T)P(E=T)P(A=T|B=T,E=T)P(J=T|A=T)P(M=F|A=T)$$

Parameter complexity problem

• In the BBN the **full joint distribution** is defined as:

$$\mathbf{P}(X_1, X_2, ..., X_n) = \prod_{i=1}^n \mathbf{P}(X_i \mid pa(X_i))$$

What did we save?

Alarm example: 5 binary (True, False) variables

of parameters of the full joint:

$$2^5 = 32$$

One parameter is for free:

$$2^5 - 1 = 31$$

of parameters of the BBN:

$$2^3 + 2(2^2) + 2(2) = 20$$

One parameter in every conditional is for free:

$$2^2 + 2(2) + 2(1) = 10$$

CS 2740 Knowledge representation

Inference in Bayesian networks

- BBN models compactly the full joint distribution by taking advantage of existing independences between variables
 - Smaller number of parameters
- But we are interested in solving various **inference tasks**:
 - Diagnostic task. (from effect to cause)

$$\mathbf{P}(Burglary \mid JohnCalls = T)$$

- Prediction task. (from cause to effect)

$$\mathbf{P}(JohnCalls \mid Burglary = T)$$

Other probabilistic queries (queries on joint distributions).

• Question: Can we take advantage of independences to construct special algorithms and speedup the inference?

Inference in Bayesian network

- Bad news:
 - Exact inference problem in BBNs is NP-hard (Cooper)
 - Approximate inference is NP-hard (Dagum, Luby)
- But very often we can achieve significant improvements
- · Assume our Alarm network

• Assume we want to compute: P(J = T)

CS 2740 Knowledge representation

Inference in Bayesian networks

Computing: P(J = T)

Approach 1. Blind approach.

- Sum out all un-instantiated variables from the full joint,
- express the joint distribution as a product of conditionals

$$P(J = T) =$$

$$= \sum_{b \in T, F} \sum_{e \in T, F} \sum_{a \in T, F} \sum_{m \in T, F} P(B = b, E = e, A = a, J = T, M = m)$$

$$= \sum_{b \in T, F} \sum_{a \in T, F} \sum_{a \in T, F} P(J = T \mid A = a) P(M = m \mid A = a) P(A = a \mid B = b, E = e) P(B = b) P(E = e)$$

Computational cost:

Number of additions: 15

Number of products: 16*4=64

Inference in Bayesian networks

Approach 2. Interleave sums and products

 Combines sums and product in a smart way (multiplications by constants can be taken out of the sum)

$$P(J=T)=$$

$$= \sum_{b \in T, F} \sum_{e \in T, F} \sum_{a \in T, F} P(J = T \mid A = a) P(M = m \mid A = a) P(A = a \mid B = b, E = e) P(B = b) P(E = e)$$

$$= \sum_{b \in T, F} \sum_{a \in T, F} \sum_{m \in T, F} P(J = T \mid A = a) P(M = m \mid A = a) P(B = b) [\sum_{e \in T, F} P(A = a \mid B = b, E = e) P(E = e)]$$

$$= \sum_{a \in T, F} P(J = T \mid A = a) [\sum_{m \in T, F} P(M = m \mid A = a)] [\sum_{b \in T, F} P(B = b) [\sum_{e \in T, F} P(A = a \mid B = b, E = e) P(E = e)]$$

Computational cost:

Number of additions: 1+2*[1+1+2*1]=9Number of products: 2*[2+2*(1+2*1)]=16

CS 2740 Knowledge representation

Variable elimination

- Idea: interleave sum and products one variable at the time during the inference
 - Typically relies on a special structure (called joint tree) that groups together multiple variables
 - E.g. Query P(J=T) requires to eliminate A,B,E,M and this can be done in different order

$$P(J=T)=$$

$$= \sum_{b \in T, F} \sum_{a \in T, F} \sum_{a \in T, F} \sum_{m \in T, F} P(J = T \mid A = a) P(M = m \mid A = a) P(A = a \mid B = b, E = e) P(B = b) P(E = e)$$

Assume order: M, E, B,A to calculate P(J = T)

$$= \sum_{b \in T, F} \sum_{a \in T, F} \sum_{a \in T, F} P(J = T \mid A = a) P(M = m \mid A = a) P(A = a \mid B = b, E = e) P(B = b) P(E = e)$$

$$= \sum_{b \in T, F} \sum_{e \in T, F} \sum_{a \in T, F} P(J = T \mid A = a) P(A = a \mid B = b, E = e) P(B = b) P(E = e) \left[\sum_{m \in T, F} P(M = m \mid A = a) \right]$$

$$= \sum_{b \in T, F} \sum_{e \in T, F} \sum_{a \in T, F} P(J = T \mid A = a) P(A = a \mid B = b, E = e) P(B = b) P(E = e) \quad 1$$

$$= \sum_{b \in T} \sum_{E} \sum_{c \in T} P(J = T \mid A = a) P(A = a \mid B = b, E = e) P(B = b) P(E = e)$$
1

$$= \sum_{a \in T, F} \sum_{b \in T, F} P(J = T \mid A = a) P(B = b) \left[\sum_{e \in T, F} P(A = a \mid B = b, E = e) P(E = e) \right]$$

$$= \sum_{m=1}^{\infty} \sum_{n=0}^{\infty} P(J=T \mid A=a) P(B=b) \tau_1(A=a,B=b)$$

$$= \sum_{a \in T, F} \sum_{b \in T, F} P(J = T \mid A = a) P(B = b) \tau_1(A = a, B = b)$$

$$= \sum_{a \in T, F} P(J = T \mid A = a) \left[\sum_{e \in T, F} P(B = b) \tau_1(A = a, B = b) \right]$$

$$= \sum_{a \in T, F} P(J = T \mid A = a) \quad \tau_2(A = a)$$

CS 2740 Knowledge representation

Variable elimination

The order in which variables are eliminated may effect the efficiency of the variable elimination process

Assume the following BBN and calculation of P(Job):

Calculations performed in terms of factors:

$$p(J) = \sum_{L,S,G,H,I,D,C} \phi(c)\phi(i)\phi(d,c)\phi(g,i,d)\phi(s,i)\phi(l,g)\phi(j,l,s)\phi(h,g,j)$$

$$= \sum_{L,S,G,H,I,D} \phi(i)\phi(g,i,d)\phi(s,i)\phi(l,g)\phi(j,l,s)\phi(h,g,j) \sum_{C} \phi(c)\phi(d,c)$$

$$= \sum_{L,S,G,H,I,D} \phi(i)\phi(g,i,d)\phi(s,i)\phi(l,g)\phi(j,l,s)\phi(h,g,j)\tau(d)$$

...

$$= \sum_{L,S} \phi(j,l,s) \sum_{G} \phi(l,g) \tau(s,g) \tau(g,j)$$

$$= \sum_{L,S} \phi(j,l,s) \tau(l,s,j)$$

$$= \sum_{l} \tau(l,j)$$

$$=\tau(j)$$

CS 2740 Knowledge representation

Factor Product

Variables: A,B,C

$$\phi(A, B, C) = \phi(A, C) \circ \phi(A, B)$$

$$\phi(A,B,C)$$

 $\phi(A,C)$

bl	cl	0.1
bl	c2	0.6
b2	cl	0.3
b2	c2	0.4

 $\phi(A,B)$

al	bl	0.5
al	b2	0.2
a2	bl	0.1
a2	b2	0.3
a3	bl	0.2
a3	b2	0.4

al	bl	cl	0.5*0.1
al	b1	c2	0.5*0.6
al	b2	cl	0.2*0.3
al	b2	c2	0.2*0.4
a2	b1	cl	0.1*0.1
a2	bl	c2	0.1*0.6
a2	b2	cl	0.3*0.3
a2	b2	c2	0.3*0.4
a3	bl	cl	0.2*0.1
a3	bl	c2	0.2*0.6
a3	b2	cl	0.4*0.3
a3	b2	c2	0.4*0.4

Factor Marginalization

Variables: A,B,C

$\phi(A,C) = \sum_{i=1}^{n} \phi(A_i,C_i)$	$\sum \phi(A,B,C)$
	R

al	b1	cl	0.2
al	bl	c2	0.35
al	b2	cl	0.4
al	b2	c2	0.15
a2	bl	cl	0.5
a2	bl	c2	0.1
a2	b2	cl	0.3
a2	b2	c2	0.2
a3	bl	cl	0.25
a3	bl	c2	0.45
a3	b2	cl	0.15
a3	b2	c2	0.25
			30 27 40 17

al	cl	0.2+0.4=0.6
al	c2	0.35+0.15=0.5
a2	cl	0.8
a2	c2	0.3
a3	cl	0.4
a3	c2	0.7

CS 2740 Knowledge representation

Variable elimination

Trace 1:

	ma			
Step	Var	Factors Used	New Factor	
1	С	$\phi_c(C), \phi_D(D,C)$	$\tau_1(D)$	_
2	D	$\phi_G(G,I,D), \tau_1(D)$	$ au_2(G,I)$	_
3	I	$\phi_I(I), \phi_S(S, I), \tau_2(G, I)$	$ au_3(G,S)$	
4	Н	$\phi_H(H,G,J)$	$ au_4(G,J)$	
5	G	$\tau_4(G,J), \tau_3(G,S), \phi_L(L,G)$	$ au_5(J,L,S)$	
6	S	$ au_5(J,L,S), \phi_J(J,L,S)$	$ au_6(J,L)$	
7	L	$ au_6(J,L)$	$ au_7(J)$	

Trace 1:

Step	Var	Factors Used	New Factor	
1	С	$\phi_c(C), \phi_D(D,C)$	$\tau_1(D)$	
2	D	$\phi_G(G,I,D), \tau_1(D)$	$ au_2(G,I)$	C
3	I	$\phi_I(I), \phi_S(S, I), \tau_2(G, I)$	$ au_3(G,S)$	
4	Н	$\phi_H(H,G,J)$	$ au_4(G,J)$	G
5	G	$\tau_4(G,J), \tau_3(G,S), \phi_L(L,G)$	$ au_5(J,L,S)$	
6	S	$ au_5(J,L,S), \phi_J(J,L,S)$	$\tau_6(J,L)$	<u></u>
7	L	$ au_6(J,L)$	$\tau_7(J)$	

Complexity: 4 variables used – 1 summed away

CS 2740 Knowledge representation

Variable elimination

Trace 2:

Step	Var	Factors Used	New Factor	
1	G	$\phi_G(G, I, D), \phi_L(L, G)\phi_H(H, G, J)$	$\tau_1(I,D,L,J,H)$	
2	I	$\phi_I(I), \phi_S(S, I)\tau_1(I, D, L, J, H)$	$\tau_2(D,L,S,J,H)$	C
3	S	$\phi_J(J,L,S), \tau_2(D,L,S,J,H)$	$ au_3(D,L,J,H)$	
4	L	$ au_3(D,L,J,H)$	$ au_4(D,J,H)$	G
5	Н	$ au_4(D,J,H)$	$ au_5(D,J)$	
6	C	$ au_5(D,J), \phi_D(D,C)$	$ au_6(D,J)$	H
7	D	$ au_6(D,J)$	$ au_7(J)$	

Trace 2:

Step	Var	Factors Used	New Factor	
1	G	$\phi_G(G, I, D), \phi_L(L, G)\phi_H(H, G, J)$	$\tau_1(I,D,L,J,H)$	
2	I	$\phi_I(I), \phi_S(S, I)\tau_1(I, D, L, J, H)$	$ au_2(D,L,S,J,H)$	C
3	S	$\phi_J(J,L,S), \tau_2(D,L,S,J,H)$	$\tau_3(D,L,J,H)$	D
4	L	$ au_3(D,L,J,H)$	$ au_4(D,J,H)$	G
5	Н	$ au_4(D,J,H)$	$ au_5(D,J)$	
6	С	$ au_5(D,J), \phi_D(D,C)$	$\tau_6(D,J)$	H
7	D	$ au_6(D,J)$	$ au_7(J)$	

Complexity: 6 variables used – 1 summed out

CS 2740 Knowledge representation

Inference in Bayesian network

- Exact inference algorithms:
 - Variable elimination
 - Recursive decomposition (Cooper, Darwiche)
 - Belief propagation algorithm (Pearl)
 - Arc reversal (Olmsted, Schachter)
- Approximate inference algorithms:
 - Monte Carlo methods:
 - Forward sampling, Likelihood sampling
 - Variational methods