### CS 2740 Knowledge representation Lecture 19

# Bayesian belief networks. Inference.

Milos Hauskrecht milos@cs.pitt.edu 5329 Sennott Square

CS 2740 Knowledge representation

### **Project proposals**

**Due:** Tuesday, 27, 2007

1-2 pages long

#### **Proposal**

- Written proposal:
  - 1. Outline the problem you would like to tackle. Why is the problem important?
  - 2. Methods you plan to try and implement for the problem. References to previous work.
  - 3. How do you plan to test, run your solution.
  - 4. Schedule of work (approximate timeline of work)
- A 3-slide PPT presentation summarizing points 1-4

# **OpenCyc installation on linux**

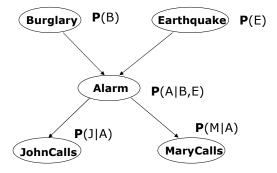
- 1. Note that OpenCyc for linux works with only some of our linux machines: arsenic and antimony were tested and work. So if you can't run it, try ssh arsenic.cs.pitt.edu or ssh antimony.cs.pitt.edu
- 2. Do tar -xvzf ~cmason/opencyc-1.0.2-linux.tgz from home directory.
- 3. Study the README.txt
- 3.1 Create a file named platform-override.txt under your opencyc-1.0/scripts directory. Type in "RH-ES3-x86\_32" to your file.
- 3.2 Run ./run-cyc.sh from your opencyc-1.0/scripts directory. This should be able to build the OpenCyc system.

CS 2740 Knowledge representation

# Bayesian belief network.

### 1. Directed acyclic graph

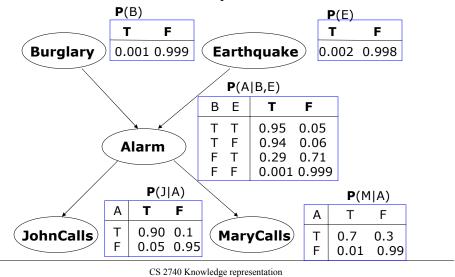
- **Nodes** = random variables
- Links = missing links encode independences.



# Bayesian belief network

#### 2. Local conditional distributions

• relate variables and their parents



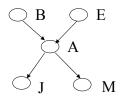
# Full joint distribution in BBNs

**Full joint distribution** is defined in terms of local conditional distributions (obtained via the chain rule):

$$\mathbf{P}(X_{1}, X_{2}, ..., X_{n}) = \prod_{i=1,..n} \mathbf{P}(X_{i} \mid pa(X_{i}))$$

### **Example:**

Assume the following assignment of values to random variables B=T, E=T, A=T, J=T, M=F



Then its probability is:

$$P(B=T,E=T,A=T,J=T,M=F) = P(B=T)P(E=T)P(A=T|B=T,E=T)P(J=T|A=T)P(M=F|A=T)$$

# Parameter complexity problem

• In the BBN the **full joint distribution** is defined as:

$$\mathbf{P}(X_1, X_2, ..., X_n) = \prod_{i=1}^n \mathbf{P}(X_i \mid pa(X_i))$$

What did we save?

Alarm example: 5 binary (True, False) variables

# of parameters of the full joint:

$$2^5 = 32$$

One parameter is for free:

$$2^5 - 1 = 31$$

# of parameters of the BBN:

$$2^3 + 2(2^2) + 2(2) = 20$$



One parameter in every conditional is for free:

$$2^2 + 2(2) + 2(1) = 10$$

CS 2740 Knowledge representation

### Inference in Bayesian networks

- BBN models compactly the full joint distribution by taking advantage of existing independences between variables
  - Smaller number of parameters
- But we are interested in solving various **inference tasks**:
  - Diagnostic task. (from effect to cause)

$$\mathbf{P}(Burglary \mid JohnCalls = T)$$

- Prediction task. (from cause to effect)

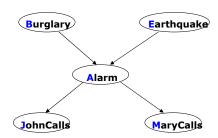
$$\mathbf{P}(JohnCalls \mid Burglary = T)$$

Other probabilistic queries (queries on joint distributions).

• Question: Can we take advantage of independences to construct special algorithms and speedup the inference?

# Inference in Bayesian network

- Bad news:
  - Exact inference problem in BBNs is NP-hard (Cooper)
  - Approximate inference is NP-hard (Dagum, Luby)
- But very often we can achieve significant improvements
- · Assume our Alarm network



• Assume we want to compute: P(J = T)

CS 2740 Knowledge representation

# Inference in Bayesian networks

**Computing:** P(J = T)

Approach 1. Blind approach.

- Sum out all un-instantiated variables from the full joint,
- express the joint distribution as a product of conditionals

$$P(J = T) =$$

$$= \sum_{b \in T, F} \sum_{e \in T, F} \sum_{a \in T, F} \sum_{m \in T, F} P(B = b, E = e, A = a, J = T, M = m)$$

$$= \sum_{b \in T, F} \sum_{a \in T, F} \sum_{a \in T, F} P(J = T \mid A = a) P(M = m \mid A = a) P(A = a \mid B = b, E = e) P(B = b) P(E = e)$$

### **Computational cost:**

Number of additions: 15

Number of products: 16\*4=64

# Inference in Bayesian networks

#### **Approach 2. Interleave sums and products**

 Combines sums and product in a smart way (multiplications by constants can be taken out of the sum)

$$P(J=T)=$$

$$= \sum_{b \in T, F} \sum_{e \in T, F} \sum_{a \in T, F} P(J = T \mid A = a) P(M = m \mid A = a) P(A = a \mid B = b, E = e) P(B = b) P(E = e)$$

$$= \sum_{b \in T, F} \sum_{a \in T, F} \sum_{m \in T, F} P(J = T \mid A = a) P(M = m \mid A = a) P(B = b) [\sum_{e \in T, F} P(A = a \mid B = b, E = e) P(E = e)]$$

$$= \sum_{a \in T, F} P(J = T \mid A = a) [\sum_{m \in T, F} P(M = m \mid A = a)] [\sum_{b \in T, F} P(B = b) [\sum_{e \in T, F} P(A = a \mid B = b, E = e) P(E = e)]$$

#### **Computational cost:**

Number of additions: 1+2\*[1+1+2\*1]=9Number of products: 2\*[2+2\*(1+2\*1)]=16

CS 2740 Knowledge representation

### Variable elimination

- Idea: interleave sum and products one variable at the time during the inference
  - Typically relies on a special structure (called joint tree) that groups together multiple variables
  - E.g. Query P(J=T) requires to eliminate A,B,E,M and this can be done in different order

$$P(J=T)=$$

$$= \sum_{b \in T, F} \sum_{a \in T, F} \sum_{a \in T, F} \sum_{m \in T, F} P(J = T \mid A = a) P(M = m \mid A = a) P(A = a \mid B = b, E = e) P(B = b) P(E = e)$$

Assume order: M, E, B,A to calculate P(J = T)

$$= \sum_{b \in T, F} \sum_{a \in T, F} \sum_{a \in T, F} P(J = T \mid A = a) P(M = m \mid A = a) P(A = a \mid B = b, E = e) P(B = b) P(E = e)$$

$$= \sum_{b \in T, F} \sum_{e \in T, F} \sum_{a \in T, F} P(J = T \mid A = a) P(A = a \mid B = b, E = e) P(B = b) P(E = e) \left[ \sum_{m \in T, F} P(M = m \mid A = a) \right]$$

$$= \sum_{b \in T, F} \sum_{e \in T, F} \sum_{a \in T, F} P(J = T \mid A = a) P(A = a \mid B = b, E = e) P(B = b) P(E = e) \quad 1$$

$$= \sum_{b \in T} \sum_{E} \sum_{c \in T} P(J = T \mid A = a) P(A = a \mid B = b, E = e) P(B = b) P(E = e)$$
1

$$= \sum_{a \in T, F} \sum_{b \in T, F} P(J = T \mid A = a) P(B = b) \left[ \sum_{e \in T, F} P(A = a \mid B = b, E = e) P(E = e) \right]$$

$$= \sum_{m=1}^{\infty} \sum_{n=0}^{\infty} P(J=T \mid A=a) P(B=b) \tau_1(A=a,B=b)$$

$$= \sum_{a \in T, F} \sum_{b \in T, F} P(J = T \mid A = a) P(B = b) \tau_1(A = a, B = b)$$

$$= \sum_{a \in T, F} P(J = T \mid A = a) \left[ \sum_{e \in T, F} P(B = b) \tau_1(A = a, B = b) \right]$$

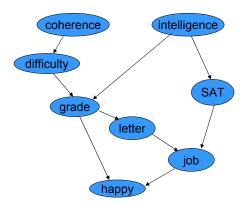
$$= \sum_{a \in T, F} P(J = T \mid A = a) \quad \tau_2(A = a)$$

CS 2740 Knowledge representation

### Variable elimination

The order in which variables are eliminated may effect the efficiency of the variable elimination process

Assume the following BBN and calculation of P(Job):



#### Calculations performed in terms of factors:

$$p(J) = \sum_{L,S,G,H,I,D,C} \phi(c)\phi(i)\phi(d,c)\phi(g,i,d)\phi(s,i)\phi(l,g)\phi(j,l,s)\phi(h,g,j)$$

$$= \sum_{L,S,G,H,I,D} \phi(i)\phi(g,i,d)\phi(s,i)\phi(l,g)\phi(j,l,s)\phi(h,g,j) \sum_{C} \phi(c)\phi(d,c)$$

$$= \sum_{L,S,G,H,I,D} \phi(i)\phi(g,i,d)\phi(s,i)\phi(l,g)\phi(j,l,s)\phi(h,g,j)\tau(d)$$

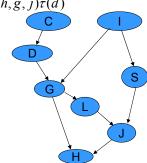
...

$$= \sum_{L,S} \phi(j,l,s) \sum_{G} \phi(l,g) \tau(s,g) \tau(g,j)$$

$$= \sum_{L,S} \phi(j,l,s) \tau(l,s,j)$$

$$= \sum_{l} \tau(l,j)$$

$$=\tau(j)$$



CS 2740 Knowledge representation

### **Factor Product**

Variables: A,B,C

$$\phi(A, B, C) = \phi(A, C) \circ \phi(A, B)$$

$$\phi(A,B,C)$$

 $\phi(A,C)$ 

| bl | cl | 0.1 |
|----|----|-----|
| bl | c2 | 0.6 |
| b2 | cl | 0.3 |
| b2 | c2 | 0.4 |

 $\phi(A,B)$ 

| al | bl | 0.5 |
|----|----|-----|
| al | b2 | 0.2 |
| a2 | bl | 0.1 |
| a2 | b2 | 0.3 |
| a3 | bl | 0.2 |
| a3 | b2 | 0.4 |

| al | bl | cl | 0.5*0.1 |
|----|----|----|---------|
| al | b1 | c2 | 0.5*0.6 |
| al | b2 | cl | 0.2*0.3 |
| al | b2 | c2 | 0.2*0.4 |
| a2 | b1 | cl | 0.1*0.1 |
| a2 | bl | c2 | 0.1*0.6 |
| a2 | b2 | cl | 0.3*0.3 |
| a2 | b2 | c2 | 0.3*0.4 |
| a3 | bl | cl | 0.2*0.1 |
| a3 | bl | c2 | 0.2*0.6 |
| a3 | b2 | cl | 0.4*0.3 |
| a3 | b2 | c2 | 0.4*0.4 |

# **Factor Marginalization**

Variables: A,B,C

| $\phi(A,C) = \sum_{i=1}^{n} \phi(A_i,C_i)$ | $\sum \phi(A,B,C)$ |
|--------------------------------------------|--------------------|
|                                            | R                  |

| al | b1 | cl | 0.2         |
|----|----|----|-------------|
| al | bl | c2 | 0.35        |
| al | b2 | cl | 0.4         |
| al | b2 | c2 | 0.15        |
| a2 | bl | cl | 0.5         |
| a2 | bl | c2 | 0.1         |
| a2 | b2 | cl | 0.3         |
| a2 | b2 | c2 | 0.2         |
| a3 | bl | cl | 0.25        |
| a3 | bl | c2 | 0.45        |
| a3 | b2 | cl | 0.15        |
| a3 | b2 | c2 | 0.25        |
|    |    |    | 30 27 40 17 |

| al | cl | 0.2+0.4=0.6   |
|----|----|---------------|
| al | c2 | 0.35+0.15=0.5 |
| a2 | cl | 0.8           |
| a2 | c2 | 0.3           |
| a3 | cl | 0.4           |
| a3 | c2 | 0.7           |
|    |    |               |

CS 2740 Knowledge representation

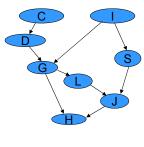
# Variable elimination

#### Trace 1:

|      | ma  |                                         |                |   |
|------|-----|-----------------------------------------|----------------|---|
| Step | Var | Factors Used                            | New Factor     |   |
| 1    | С   | $\phi_c(C), \phi_D(D,C)$                | $\tau_1(D)$    | _ |
| 2    | D   | $\phi_G(G,I,D), \tau_1(D)$              | $	au_2(G,I)$   | _ |
| 3    | I   | $\phi_I(I), \phi_S(S, I), \tau_2(G, I)$ | $	au_3(G,S)$   |   |
| 4    | Н   | $\phi_H(H,G,J)$                         | $	au_4(G,J)$   |   |
| 5    | G   | $\tau_4(G,J), \tau_3(G,S), \phi_L(L,G)$ | $	au_5(J,L,S)$ |   |
| 6    | S   | $	au_5(J,L,S), \phi_J(J,L,S)$           | $	au_6(J,L)$   |   |
| 7    | L   | $	au_6(J,L)$                            | $	au_7(J)$     |   |
|      |     |                                         |                |   |
|      |     |                                         |                |   |

Trace 1:

| Step | Var | Factors Used                            | New Factor     |         |
|------|-----|-----------------------------------------|----------------|---------|
| 1    | С   | $\phi_c(C), \phi_D(D,C)$                | $\tau_1(D)$    |         |
| 2    | D   | $\phi_G(G,I,D), \tau_1(D)$              | $	au_2(G,I)$   | C       |
| 3    | I   | $\phi_I(I), \phi_S(S, I), \tau_2(G, I)$ | $	au_3(G,S)$   |         |
| 4    | Н   | $\phi_H(H,G,J)$                         | $	au_4(G,J)$   | G       |
| 5    | G   | $\tau_4(G,J), \tau_3(G,S), \phi_L(L,G)$ | $	au_5(J,L,S)$ |         |
| 6    | S   | $	au_5(J,L,S), \phi_J(J,L,S)$           | $\tau_6(J,L)$  | <u></u> |
| 7    | L   | $	au_6(J,L)$                            | $\tau_7(J)$    |         |



**Complexity:** 4 variables used – 1 summed away

CS 2740 Knowledge representation

# Variable elimination

Trace 2:

| Step | Var | Factors Used                                   | New Factor          |   |
|------|-----|------------------------------------------------|---------------------|---|
| 1    | G   | $\phi_G(G, I, D), \phi_L(L, G)\phi_H(H, G, J)$ | $\tau_1(I,D,L,J,H)$ |   |
| 2    | I   | $\phi_I(I), \phi_S(S, I)\tau_1(I, D, L, J, H)$ | $\tau_2(D,L,S,J,H)$ | C |
| 3    | S   | $\phi_J(J,L,S), \tau_2(D,L,S,J,H)$             | $	au_3(D,L,J,H)$    |   |
| 4    | L   | $	au_3(D,L,J,H)$                               | $	au_4(D,J,H)$      | G |
| 5    | Н   | $	au_4(D,J,H)$                                 | $	au_5(D,J)$        |   |
| 6    | C   | $	au_5(D,J), \phi_D(D,C)$                      | $	au_6(D,J)$        | H |
| 7    | D   | $	au_6(D,J)$                                   | $	au_7(J)$          |   |
|      |     |                                                |                     |   |

Trace 2:

| Step | Var | Factors Used                                   | New Factor          |   |
|------|-----|------------------------------------------------|---------------------|---|
| 1    | G   | $\phi_G(G, I, D), \phi_L(L, G)\phi_H(H, G, J)$ | $\tau_1(I,D,L,J,H)$ |   |
| 2    | I   | $\phi_I(I), \phi_S(S, I)\tau_1(I, D, L, J, H)$ | $	au_2(D,L,S,J,H)$  | C |
| 3    | S   | $\phi_J(J,L,S), \tau_2(D,L,S,J,H)$             | $\tau_3(D,L,J,H)$   | D |
| 4    | L   | $	au_3(D,L,J,H)$                               | $	au_4(D,J,H)$      | G |
| 5    | Н   | $	au_4(D,J,H)$                                 | $	au_5(D,J)$        |   |
| 6    | С   | $	au_5(D,J), \phi_D(D,C)$                      | $\tau_6(D,J)$       | H |
| 7    | D   | $	au_6(D,J)$                                   | $	au_7(J)$          |   |

**Complexity:** 6 variables used – 1 summed out

CS 2740 Knowledge representation

### Inference in Bayesian network

- Exact inference algorithms:
  - Variable elimination
  - Recursive decomposition (Cooper, Darwiche)
  - Belief propagation algorithm (Pearl)
  - Arc reversal (Olmsted, Schachter)
- Approximate inference algorithms:
  - Monte Carlo methods:
    - Forward sampling, Likelihood sampling
  - Variational methods