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Bayesian belief networks.
Inference.

CS 2740 Knowledge representation

Project proposals

Due: Tuesday, 27, 2007
• 1-2 pages long
Proposal 
• Written proposal:

1. Outline the problem you would like to tackle. Why is the 
problem important?

2. Methods you plan to try and implement for the problem.  
References to previous work.

3. How do you plan to test, run your solution. 
4. Schedule of work (approximate timeline of work)

• A 3-slide PPT presentation summarizing  points  1-4
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OpenCyc installation on linux

1. Note that OpenCyc for linux works with only some of our linux
machines: arsenic and antimony were tested and work. So if you 
can't run it, try ssh arsenic.cs.pitt.edu or ssh antimony.cs.pitt.edu

2. Do  tar -xvzf ~cmason/opencyc-1.0.2-linux.tgz from home 
directory.

3. Study the README.txt
• 3.1 Create a file named platform-override.txt under your 

opencyc-1.0/scripts directory. Type in "RH-ES3-x86_32" to 
your file.

• 3.2 Run ./run-cyc.sh from your opencyc-1.0/scripts directory.
This should be able to build the OpenCyc system.
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Bayesian belief network.

Burglary Earthquake

JohnCalls MaryCalls

Alarm

P(B) P(E)

P(A|B,E)

P(J|A) P(M|A)

1. Directed acyclic graph
• Nodes = random variables
• Links = missing links encode independences.
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Bayesian belief network

Burglary Earthquake

JohnCalls MaryCalls

Alarm

B   E T       F

T   T 0.95   0.05
T   F     0.94   0.06
F   T     0.29   0.71
F   F     0.001 0.999

P(B)

0.001 0.999

P(E)

0.002  0.998

A   T      F

T    0.90  0.1
F    0.05  0.95

A      T      F

T    0.7    0.3
F    0.01   0.99

P(A|B,E)

P(J|A) P(M|A)

T        F T         F

2. Local conditional distributions 
• relate variables and their parents
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Full joint distribution in BBNs

Full joint distribution is defined in terms of local conditional 
distributions (obtained via the chain rule):
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Example:

)|()|(),|()()( TAFMPTATJPTETBTAPTEPTBP =========

Then its probability is:

Assume the following assignment
of values to random variables

FMTJTATETB ===== ,,,,
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# of parameters of the full joint: 

Parameter complexity problem
• In the BBN the full joint distribution is defined as:

• What did we save?
Alarm example: 5 binary (True, False) variables

Burglary

JohnCalls

Alarm

Earthquake

MaryCalls
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3225 =

3112 5 =−
One parameter is for free:

# of parameters of the BBN:

20)2(2)2(22 23 =++

10)1(2)2(22 2 =++
One parameter in every conditional is for free: 

CS 2740 Knowledge representation

Inference in Bayesian networks 
• BBN models compactly the full joint distribution by taking 

advantage of existing independences between variables
– Smaller number of parameters

• But we are interested in solving various inference tasks:
– Diagnostic task. (from effect to cause)

– Prediction task.  (from cause to effect)

– Other probabilistic queries (queries on joint distributions).

• Question: Can we take advantage of independences to construct 
special algorithms and speedup the inference?

)|( TJohnCallsBurglary =P

)|( TBurglaryJohnCalls =P

)( AlarmP
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Inference in Bayesian network
• Bad news: 

– Exact inference problem in BBNs is NP-hard (Cooper)
– Approximate inference is NP-hard (Dagum, Luby)

• But very often we can achieve significant improvements
• Assume our Alarm network

• Assume we want to compute:

Burglary

JohnCalls

Alarm

Earthquake

MaryCalls

)( TJP =

CS 2740 Knowledge representation

Inference in Bayesian networks
Computing:
Approach 1. Blind approach.
• Sum out all un-instantiated variables from the full joint, 
• express the joint distribution as a product of conditionals

Computational cost:
Number of  additions: 15
Number of products: 16*4=64

== )( TJP
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FTb FTe FTa FTm
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∈ ∈ ∈ ∈

)( TJP =
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Inference in Bayesian networks
Approach 2. Interleave sums and products
• Combines sums and product in a smart way (multiplications 

by constants can be taken out of the sum)

Computational cost:
Number of  additions: 1+2*[1+1+2*1]=9
Number of products: 2*[2+2*(1+2*1)]=16

== )( TJP

)](),|()[()|()|(
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FTeFTb FTa FTm
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Variable elimination

• Idea: interleave sum and products one variable at the time 
during the inference
– Typically relies on a special structure (called joint tree) 

that groups together  multiple variables
– E.g. Query                 requires to eliminate A,B,E,M and 

this can be done in different order 

== )( TJP
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Variable elimination
Assume order: M, E, B,A to calculate 
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Variable elimination
The order in which variables are eliminated may effect the 

efficiency of the variable elimination process
Assume the following BBN and calculation of P(Job):

coherence intelligence

difficulty

grade
SAT

letter

job

happy
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Variable elimination

Calculations performed in terms of factors:
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Factor Product

0.4c2b2

0.3c1b2

0.6c2b1

0.1c1b1

0.4b2a3

0.2b1a3

0.3b2a2

0.1b1a2

0.2b2a1

0.5b1a1

c2

c1

c2

c1

c2

c1

c2

c1

c2

c1

c2

c1

0.4*0.4b2a3

0.4*0.3b2a3

0.2*0.6b1a3

0.2*0.1b1a3

0.3*0.4b2a2

0.3*0.3b2a2

0.1*0.6b1a2

0.1*0.1b1a2

0.2*0.4b2a1

0.2*0.3b2a1

0.5*0.6b1a1

0.5*0.1b1a1

Variables: A,B,C

),( CAφ ),( BAφ

),,( CBAφ),(),(),,( BACACBA φφφ o=
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Factor Marginalization

0.25c2b2a3

0.15c1b2a3

0.45c2b1a3

0.25c1b1a3

0.2c2b2a2

0.3c1b2a2

0.1c2b1a2

0.5c1b1a2

0.15c2b2a1

0.4c1b2a1

0.35c2b1a1

0.2c1b1a1

0.7c2a3

0.4c1a3

0.3c2a2

0.8c1a2

0.35+0.15=0.5c2a1

0.2+0.4=0.6c1a1

Variables: A,B,C ),,(),( CBACA
B

φφ ∑=
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Variable elimination

Trace 1:

C I

D

G
S

L
J

H
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Variable elimination

Trace 1:

C I

D

G
S

L
J

H

Complexity: 4 variables used – 1 summed away 
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Variable elimination

Trace 2:

C I

D

G
S

L
J

H
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Variable elimination

Trace 2:

C I

D

G
S

L
J

H

Complexity: 6 variables used – 1 summed out
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Inference in Bayesian network

• Exact inference algorithms:
– Variable elimination
– Recursive decomposition (Cooper, Darwiche)
– Belief propagation algorithm (Pearl)
– Arc reversal (Olmsted, Schachter)

• Approximate inference algorithms:
– Monte Carlo methods:

• Forward sampling, Likelihood sampling
– Variational methods 


