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Bayesian belief network.

1. Directed acyclic graph
* Nodes = random variables
» Links = missing links encode independences.
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Bayesian belief network.

2. Local conditional distributions
» relate variables and their parents
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Bayesian belief network

P(B) P(E)
T F T F
Burglary )| 0.001 0.999 | ( Earthquake ) |0.002 0.998
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B E T F
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F T | 0.29 0.71
F F | 0.001 0.999
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m -

CS 2740 Knowledge representation




Full joint distribution in BBNs

Full joint distribution is defined in terms of local conditional
distributions (obtained via the chain rule):

P(X,X,,..X,)= HP(Xi | pa(X,))

i=l,.n

OB E
Example: \ @}D
Assume the following assignment A
of values to random variables (j/ E
B=T,E=T,A=T,J=T,M=F J M
Then its probability is:

PB=T,E=T,A=T,J=T,M=F)=
PB=DTRE=DPA=T|B=T,E=T)PJ=T|A=T)AM=F| A=T)
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Full joint distribution in BBNs

QB E
Rewrite the full joint probability using the f
A

product rule:
PB=T,E=T,A=T,J=T,M=F)= J M

=P(J=T|B=T,E=T,A=T,M=F)PB=T,E=T,A=T,M=F)
=PJ=T|A=T)P(B=T,E=T,A=T,M =F)
PM=F|B=T,E=T,A=T)P(B=T,E=T,A=T)
PM=F|A=T)P(B=T,E=T,A=T)
P(A=T|B=T,E=T)P(B=T,E=T)
P(B T)P(E T)
—P(J T|A=T)PM=F| A=T)AA=T|B=T,E= T)P(B DAE=T)
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Parameter complexity problem

 In the BBN the full joint distribution is expressed as a product
of conditionals (of smaller) complexity

P(X, X,,..X,)= ‘HP(Xi | pa(X,))

-
o

s

Parameters:
full joint: ?

BBN: ?
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Parameter complexity problem

* In the BBN the full joint distribution is defined as:
P(X,,X,,.,X,)= H P(X, | pa(X,))
* What did we save? e

Alarm example: 5 binary (True, False) variables

# of parameters of the full joint:
25232 Cearthquaike
One parameter is for free:

2° —1=31
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Parameter complexity problem

 In the BBN the full joint distribution is defined as:
P(X,.X,.. X,)=[] P(X,|pa(X)

 What did we save? e

Alarm example: 5 binary (True, False) variables

# of parameters of the full joint:

2% =132 Cearthquake
One parameter is for free:
2° -1=31
# of parameters of the BBN: ?

@ s
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Bayesian belief network.

* In the BBN the full joint distribution is expressed using a set
of local conditional distributions

P(B) P(E)
T F T F
Burglary Earthquake
0.001 0.999 0.002 0.998
P(A|B,E)
/ BE| T F

T T | 095 0.05
T F | 0.94 0.06
F T |0.29 0.71
F F | 0.0010.999

P(IA)
Al T F A

T|0.90 0.1 | (Marycalls) | T| 0.7 03
F | 0.05 0.95 F| 0.0 0.99

=19
=
2

JohnCalls
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Bayesian belief network.

* In the BBN the full joint distribution is expressed using a set
of local conditional distributions

P(B) 2 P(E) 2
T F T F
Burglary Earthquake
0.001 0.999 0.002 0.998
P(A|B,E)
B E T F 8
T T | 0.95 0.05
T F | 0.94 0.06
F T | 0.29 0.71
F F | 0.001 0.999
P(J]|A) P(M|A)
Al T F 4 Al T F 4

JohnCalls

T|0.90 0.1 | (Marycalls) | T| 0.7 03
F| 0.05 0.95 F | 0.00 0.99
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Parameter complexity problem

* In the BBN the full joint distribution is defined as:
P(Xsza--a Xn) = H P(Xi | pa (X;))

* What did we save? e

Alarm example: 5 binary (True, False) variables

# of parameters of the full joint:

2% =32 Cearthquake
One parameter is for free: /
2° -1=31
# of parameters of the BBN:
2° +2(2°)+2(2) =120

One parameter in every conditional is for free:

l’)
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Parameter complexity problem

 In the BBN the full joint distribution is defined as:
P(X,,X,,., X )=]]PX,|pa(X),)
« What did we save? e

Alarm example: 5 binary (True, False) variables

# of parameters of the full joint:

2° =32
One parameter is for free:
2° -1=31

# of parameters of the BBN:

2° +2(2%)+2(2)=20 Johncsils Cmarycabs
One parameter in every conditional is for free:

27 +2(2)+21) =10
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Model acquisition problem

The structure of the BBN typically reflects causal relations
* BBNs are also sometime referred to as causal networks

» Causal structure is very intuitive in many applications domain
and it is relatively easy to obtain from the domain expert

Probability parameters of BBN correspond to conditional
distributions relating a random variable and its parents only

* Their complexity much smaller than the full joint

 Easier to come up (estimate) the probabilities from expert or
automatically by learning from data
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BBNs built in practice

* In various areas:
— Intelligent user interfaces (Microsoft)
— Troubleshooting, diagnosis of a technical device
— Medical diagnosis:
* Pathfinder (Intellipath)
* CPSC
* Munin
* QMR-DT
— Collaborative filtering
— Military applications

— Insurance, credit applications
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Diagnosis of car engine

» Diagnose the engine start problem
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Car insurance example

 Predict claim costs (medical, liability) based on application data

ledicalCos iabilityCost
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(ICU) Alarm network

HYPOVOLEMIA LY FAILURE ANAPHYLAXIS PULMONARY EMBOLUS

AMESTHESIA
INEUFFICIENT KINKED

PAP SHUNT T geTIoN  TUBE  DISCONNECTION

LVED
WOLUME

STROKE
VOLUME

HISTORY
L FAILURE

CATECHOLAMIME VEHNT ALY WENT MACHINE

BLOCD MY SETTIMNG
FREZSLIRE
KINUTE
ERRCR VENTILATION
LOA CUTPUT
ARTERIAL
coz2

HR BEF HREKG HR SAT EXPIRED
coz2
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CPCS
» Computer-based Patient Case Simulation system (CPCS-PM)
developed by Parker and Miller (at University of Pittsburgh)
* 422 nodes and 867 arcs

eyt . ——_a
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QMR-DT
* Medical diagnosis in internal medicine

— Bipartite network of disease/findings relations
— Derived from the Internist-1/QMR knowledge base

OMR-DT derived from Internist-1/ QMR KB

534 diseases

Caco oo

aQoac aA0oo

40740 arcs 4040 findings
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Inference in Bayesian networks

* BBN models compactly the full joint distribution by taking
advantage of existing independences between variables

— Smaller number of parameters
» But we are interested in solving various inference tasks:
— Diagnostic task. (from effect to cause)
P (Burglary | JohnCalls =T)
— Prediction task. (from cause to effect)
P (JohnCalls | Burglary =T)
— Other probabilistic queries (queries on joint distributions).
P(Alarm )

* Question: Can we take advantage of independences to construct
special algorithms and speedup the inference?
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Inference in Bayesian network

* Bad news:
— Exact inference problem in BBNs is NP-hard (Cooper)
— Approximate inference is NP-hard (Dagum, Luby)

* But very often we can achieve significant improvements

» Assume our Alarm network

-

o
\
Gomesis G

* Assume we want to compute: P(J =T)
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Inference in Bayesian networks

Computing: P(J =T)

Approach 1. Blind approach.

* Sum out all un-instantiated variables from the full joint,
» express the joint distribution as a product of conditionals

P(J=T)=

=> > > YPB=bE=ed=a,J=T,M =m)

beT ,F eeT ,F aeT ,F meT ,F

=Y > > Y PJ=T|A=a)P(M =m| A=a)P(A=a|B=b,E=e)P(B=b)P(E =¢)
bel F eeT ,F acT ,F meT ,F
Computational cost:
Number of additions: ?
Number of products: ?
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Inference in Bayesian networks
Computing: P(J =T)
Approach 1. Blind approach.

* Sum out all un-instantiated variables from the full joint,
 express the joint distribution as a product of conditionals

P(J=T)=

=> > > Y PB=bE=ed=a,J=T,M =m)

beT ,F eeT ,F aeT ,F meT ,F

=53 S Y PU=T|4=a)P(M =m| A=a)P(4=a|B=b,E = )P(B=b)P(E =)
bel F e<T ,F aeT ,F meT ,F
Computational cost:
Number of additions: 15
Number of products: ?
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Inference in Bayesian networks

Computing: P(J =T)

Approach 1. Blind approach.

* Sum out all un-instantiated variables from the full joint,
» express the joint distribution as a product of conditionals

P(J=T)=

=> > > YPB=bE=ed=a,J=T,M =m)

beT ,F eeT ,F aeT ,F meT ,F

=SS SPU=T|4=a)P(M=m| A=a)P(A=aB=b,E =e)P(B=b)P(E =)
bel F eeT ,F acT ,F meT ,F
Computational cost:
Number of additions: 15
Number of products: 16*4=64
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Inference in Bayesian networks

Approach 2. Interleave sums and products

* Combines sums and product in a smart way (multiplications
by constants can be taken out of the sum)

P(J=T)=
=Y > > YPJ=T|A=a)P(M =m| A=a)P(A=a|B=b,E =e)P(B=b)P(E =e)

bel F el F a<T ,F mel ,F

=Y > Y PJ=T|A=a)PM=m| A=a)PB=b)[ D) P(A=a|B=b,E=e)A(E=e)]

bel,F ael.F meT ,F eel,F
=Y PJ=T|A=a) Y, PM=m|A=a)][ Y. PB=b)[ Y P(A=a|B=b,E=e)P(E=e)]

Computational cost:
Number of additions: 1+2*[1+1+2*1]=?
Number of products: 2*#[2+2*(1+2*1)]=?
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Inference in Bayesian networks

Approach 2. Interleave sums and products
* Combines sums and product in a smart way (multiplications
by constants can be taken out of the sum)
P(J=T)=
=3 > > Y PJ=T|A=a)P(M =m| A=a)P(A=a|B=b,E=e)P(B=b)P(E =e)

bel F el ,F acT ,F meT ,F

=Y > Y PJ=T|A=a)PM=m| A=a)P(B=b)[ Y MA=a| B=bE=e)E=¢)]

=Y PJ=T|A=a) Y, PM=m|A=a)][ ), PB=b)[ Y P(A=a|B=bE=e)P(E=e)]

Computational cost:
Number of additions: 1+2*[1+1+2*1]=9
Number of products: 2*[2+2*(1+2*1)]=?
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Inference in Bayesian networks

Approach 2. Interleave sums and products

* Combines sums and product in a smart way (multiplications
by constants can be taken out of the sum)

P(J=T)=
=Y > > YPJ=T|A=a)P(M =m| A=a)P(A=a|B=b,E =e)P(B=b)P(E =e)

bel F el F a<T ,F mel ,F

=Y > Y PJ=T|A=a)PM=m| A=a)PB=b)[ D) P(A=a|B=b,E=e)A(E=e)]

bel,F ael.F meT ,F eel,F
=Y PJ=T|A=a) Y, PM=m|A=a)][ Y. PB=b)[ Y P(A=a|B=b,E=e)P(E=e)]

Computational cost:
Number of additions: 1+2*[1+1+2*1]=9
Number of products: 2*[2+2*(1+2*1)]=16
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