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Probabilistic inference 
Various inference tasks:

• Diagnostic task. (from effect to cause)

• Prediction task.  (from cause to effect)

• Other probabilistic queries (queries on joint distributions).
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Inference

Any query  can be computed from the full joint distribution !!!
• Joint over a subset of variables is obtained through 

marginalization

• Conditional probability over set of variables, given  other 
variables’ values is obtained through marginalization and 
definition of conditionals 
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Inference
Any query  can be computed from the full joint distribution !!!
• Any joint probability can be expressed as a product of 

conditionals via the chain rule. 

• Sometimes it is easier to define the distribution in terms of 
conditional probabilities:
– E.g. 
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Modeling uncertainty with probabilities

• Defining the full joint distribution makes it possible to 
represent and reason with uncertainty in a uniform way

• We are able to handle an arbitrary inference problem
Problems:

– Space complexity. To store a full joint distribution we 
need  to remember             numbers.
n – number of random variables, d – number of values

– Inference (time) complexity. To compute some queries 
requires        .          steps. 

– Acquisition problem. Who is going to define all of the 
probability entries?       

 )(dnO
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Medical diagnosis example 

• Space complexity. 
– Pneumonia (2 values: T,F), Fever (2: T,F), Cough (2: T,F), 

WBCcount (3: high, normal, low), paleness (2: T,F)
– Number of assignments: 2*2*2*3*2=48
– We need to define at least 47 probabilities.

• Time complexity.
– Assume we need to compute the marginal of Pneumonia=T 

from the full joint

– Sum over: 2*2*3*2=24 combinations
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Modeling uncertainty with probabilities

• Knowledge based system era (70s – early 80’s)
– Extensional non-probabilistic models
– Solve the space, time and acquisition bottlenecks in 

probability-based models 
– froze the development and advancement of KB systems 

and contributed to the slow-down of AI in 80s in general 

• Breakthrough  (late 80s, beginning of 90s)
– Bayesian belief networks

• Give solutions to the space, acquisition bottlenecks
• Partial solutions for time complexities

• Bayesian belief network
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Bayesian belief networks (BBNs)

Bayesian belief networks.
• Represent the full joint distribution over the variables more 

compactly with a smaller number of parameters. 
• Take advantage of conditional and marginal independences

among random variables

• A and B are independent

• A and B are conditionally independent given C
)()(),( BPAPBAP =

)|()|()|,( CBPCAPCBAP =
)|(),|( CAPBCAP =
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Alarm system example.
• Assume your house has an alarm system against burglary. 

You live in the seismically active area and the alarm system 
can get occasionally set off by an earthquake. You have two 
neighbors, Mary and John, who do not know each other. If 
they hear the alarm they call you, but this is not guaranteed. 

• We want to represent the probability distribution of events:
– Burglary, Earthquake, Alarm, Mary calls and John calls

Burglary

JohnCalls

Alarm

Earthquake

MaryCalls

Causal relations
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Bayesian belief network.

Burglary Earthquake

JohnCalls MaryCalls

Alarm

P(B) P(E)

P(A|B,E)

P(J|A) P(M|A)

1. Directed acyclic graph
• Nodes = random variables

Burglary, Earthquake, Alarm, Mary calls and John calls
• Links = direct (causal) dependencies between variables.

The chance of Alarm is influenced by Earthquake, The 
chance of John calling is affected by the Alarm
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Bayesian belief network.

2. Local conditional distributions 
• relate variables and their parents

Burglary Earthquake

JohnCalls MaryCalls

Alarm

P(B) P(E)

P(A|B,E)

P(J|A) P(M|A)
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Bayesian belief network.

Burglary Earthquake

JohnCalls MaryCalls

Alarm

B   E T       F

T   T 0.95   0.05
T   F     0.94   0.06
F   T     0.29   0.71
F   F     0.001 0.999

P(B)

0.001 0.999

P(E)

0.002  0.998

A   T      F

T    0.90  0.1
F    0.05  0.95

A      T      F

T    0.7    0.3
F    0.01   0.99

P(A|B,E)

P(J|A) P(M|A)

T        F T         F
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Bayesian belief networks (general)

Two  components:
• Directed acyclic graph

– Nodes correspond to random variables 
– (Missing) links encode independences

• Parameters
– Local conditional probability distributions

for every variable-parent configuration

))(|( ii XpaXP

A

B

MJ

E),( SSB Θ=

)( iXpa - stand for parents of  Xi
Where:

B   E T       F

T   T 0.95   0.05
T   F     0.94   0.06
F   T     0.29   0.71
F   F     0.001 0.999

P(A|B,E)
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Full joint distribution in BBNs

Full joint distribution is defined in terms of local conditional 
distributions (obtained via the chain rule):
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Example:

)|()|(),|()()( TAFMPTATJPTETBTAPTEPTBP =========

Then its probability is:

Assume the following assignment
of values to random variables

FMTJTATETB ===== ,,,,
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Bayesian belief networks (BBNs)

Bayesian belief networks 
• Represent the full joint distribution over the variables more 

compactly using the product of local conditionals. 
• But how did we get to local parameterizations?
Answer:
• Graphical structure encodes conditional and marginal 

independences among random variables
• A and B are independent
• A and B are conditionally independent given C

• The graph structure implies the decomposition !!!

)()(),( BPAPBAP =

)|()|()|,( CBPCAPCBAP =
)|(),|( CAPBCAP =
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Independences in BBNs
3 basic independence structures:

Burglary

JohnCalls

Alarm

Burglary

Alarm

Earthquake

JohnCalls

Alarm

MaryCalls

1. 2. 3.
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Independences in BBNs

1. JohnCalls is independent of Burglary given Alarm

Burglary

JohnCalls

Alarm

Burglary

Alarm

Earthquake

JohnCalls

Alarm

MaryCalls

1. 2. 3.

)|(),|( AJPBAJP =
)|()|()|,( ABPAJPABJP =

CS 2740 Knowledge Representation M. Hauskrecht

Independences in BBNs

2.   Burglary is independent of Earthquake (not knowing Alarm) 
Burglary and Earthquake become dependent given Alarm !!

Burglary

JohnCalls

Alarm

JohnCalls

Alarm

MaryCalls

1. 3.

)()(),( EPBPEBP =

Burglary

Alarm

Earthquake

2.
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Independences in BBNs

3.   MaryCalls is independent of JohnCalls given Alarm

Burglary

JohnCalls

Alarm

Burglary

Alarm

Earthquake

1. 2.

JohnCalls

Alarm

3.

MaryCalls

)|(),|( AJPMAJP =

)|()|()|,( AMPAJPAMJP =
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Independences in BBN

• BBN distribution models many conditional independence 
relations among distant variables and sets of variables

• These are defined in terms of the graphical criterion called d-
separation

• D-separation and independence
– Let X,Y and Z be three sets of nodes
– If X and Y are d-separated by Z,  then X and Y are 

conditionally independent given Z
• D-separation :

– A is d-separated from B given C if every undirected path 
between them is blocked with C

• Path blocking
– 3 cases that expand on three basic independence structures
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Undirected path blocking

A is d-separated from B given C if every undirected path 
between them is blocked

• 1.  Path blocking with a linear substructure

Z in C

X Y

X in A Y in B

Z

CS 2740 Knowledge Representation M. Hauskrecht

Undirected path blocking

A is d-separated from B given C if every undirected path 
between them is blocked

• 2.  Path blocking with the wedge substructure

Z in C
X Y

X in A Y in B

Z
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Undirected path blocking

A is d-separated from B given C if every undirected path 
between them is blocked

• 3.  Path blocking with the vee substructure

Z or any of its descendants not in C

X Y
X in A Y in B

Z
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Independences in BBNs

• Earthquake and Burglary are independent given MaryCalls F
• Burglary and MaryCalls are independent (not knowing Alarm)   F
• Burglary and RadioReport are independent given Earthquake      T
• Burglary and RadioReport are independent given MaryCalls F

Burglary

JohnCalls

Alarm

Earthquake

MaryCalls

RadioReport
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Bayesian belief networks (BBNs)

Bayesian belief networks 
• Represents the full joint distribution over the variables more 

compactly using the product of local conditionals. 
• So how did we get to local parameterizations?

• The decomposition is implied by the set of  independences 
encoded in the belief network.
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Full joint distribution in BBNs

M

A

B

J

E

====== ),,,,( FMTJTATETBP

Rewrite the full joint probability using the 
product rule:
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Full joint distribution in BBNs

M

A

B

J

E

====== ),,,,( FMTJTATETBP

),,,(),,,|( FMTATETBPFMTATETBTJP ==========
),,,()|( FMTATETBPTATJP =======

Rewrite the full joint probability using the 
product rule:
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Full joint distribution in BBNs

M

A

B

J

E

====== ),,,,( FMTJTATETBP

),,,(),,,|( FMTATETBPFMTATETBTJP ==========
),,,()|( FMTATETBPTATJP =======

),,(),,|( TATETBPTATETBFMP =======
),,()|( TATETBPTAFMP =====

Rewrite the full joint probability using the 
product rule:



15

CS 2740 Knowledge Representation M. Hauskrecht

Full joint distribution in BBNs

M

A

B

J

E

====== ),,,,( FMTJTATETBP

),,,(),,,|( FMTATETBPFMTATETBTJP ==========
),,,()|( FMTATETBPTATJP =======

),,(),,|( TATETBPTATETBFMP =======
),,()|( TATETBPTAFMP =====

),(),|( TETBPTETBTAP =====

Rewrite the full joint probability using the 
product rule:
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Full joint distribution in BBNs

M

A

B

J

E

====== ),,,,( FMTJTATETBP

),,,(),,,|( FMTATETBPFMTATETBTJP ==========
),,,()|( FMTATETBPTATJP =======

),,(),,|( TATETBPTATETBFMP =======
),,()|( TATETBPTAFMP =====

),(),|( TETBPTETBTAP =====
)()( TEPTBP ==

Rewrite the full joint probability using the 
product rule:
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Full joint distribution in BBNs

M

A

B

J

E

====== ),,,,( FMTJTATETBP

)()(),|()|()|( TEPTBPTETBTAPTAFMPTATJP ==========

),,,(),,,|( FMTATETBPFMTATETBTJP ==========
),,,()|( FMTATETBPTATJP =======

),,(),,|( TATETBPTATETBFMP =======
),,()|( TATETBPTAFMP =====

),(),|( TETBPTETBTAP =====
)()( TEPTBP ==

Rewrite the full joint probability using the 
product rule:


