CS 2740 Knowledge Representation Lecture 16

Modeling uncertainty

Milos Hauskrecht

milos@cs.pitt.edu 5329 Sennott Square

CS 2740 Knowledge Representation

M. Hauskrecht

KB systems. Medical example.

We want to build a KB system for the diagnosis of pneumonia.

Problem description:

- Disease: pneumonia
- Patient symptoms (findings, lab tests):
 - Fever, Cough, Paleness, WBC (white blood cells) count, Chest pain, etc.

Representation of a patient case:

• Statements that hold (are true) for the patient.

E.g: Fever = True

Cough = False

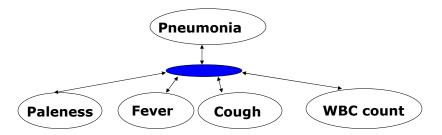
WBCcount=High

Diagnostic task: we want to decide whether the patient suffers from the pneumonia or not given the symptoms

CS 2740 Knowledge Representation

Uncertainty

To make diagnostic inference possible we need to represent knowledge (axioms) that relate symptoms and diagnosis



Problem: disease/symptoms relations are not deterministic

 They are uncertain (or stochastic) and vary from patient to patient

CS 2740 Knowledge Representation

M. Hauskrecht

Uncertainty

Two types of uncertainty:

- Disease --- Symptoms uncertainty
 - A patient suffering from pneumonia may not have fever all the times, may or may not have a cough, white blood cell test can be in a normal range.
- Symptoms Disease uncertainty
 - High fever is typical for many diseases (e.g. bacterial diseases) and does not point specifically to pneumonia
 - Fever, cough, paleness, high WBC count combined do not always point to pneumonia

CS 2740 Knowledge Representation

Uncertainty

Why are relations uncertain?

- Observability
 - It is impossible to observe all relevant components of the world
 - Observable components behave stochastically even if the underlying world is deterministic
- Efficiency, capacity limits
 - It is often impossible to enumerate and model all components of the world and their relations
 - abstractions can become stochastic

Humans can reason with uncertainty !!!

- Can computer systems do the same?

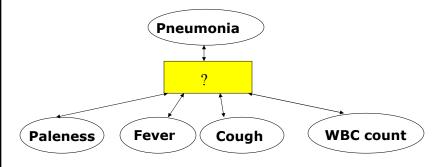
CS 2740 Knowledge Representation

M. Hauskrecht

Modeling the uncertainty.

Key challenges:

- How to represent the relations in the presence of uncertainty?
- How to manipulate such knowledge to make inferences?
 - Humans can reason with uncertainty.



CS 2740 Knowledge Representation

Methods for representing uncertainty

Extensions of the propositional and first-order logic

- Use, uncertain, imprecise statements (relations)

Example: Propositional logic with certainty factors

Very popular in 70-80s in knowledge-based systems (MYCIN)

• Facts (propositional statements) are assigned a certainty value reflecting the belief in that the statement is satisfied:

$$CF(Pneumonia = True) = 0.7$$

• Knowledge: typically in terms of modular rules

If 1. The patient has cough, and

2. The patient has a high WBC count, and

3. The patient has fever

Then with certainty 0.7

the patient has pneumonia

CS 2740 Knowledge Representation

M. Hauskrecht

Certainty factors

Problem 1:

• Chaining of multiple inference rules (propagation of uncertainty)

Solution:

• Rules incorporate tests on the certainty values

$$(A \text{ in } [0.5,1]) \land (B \text{ in } [0.7,1]) \rightarrow C \text{ with } CF = 0.8$$

Problem 2:

• Combinations of rules with the same conclusion

(A in [0.5,1])
$$\land$$
 (B in [0.7,1]) \rightarrow C with CF = 0.8
(E in [0.8,1]) \land (D in [0.9,1]) \rightarrow C with CF = 0.9

• What is the resulting *CF(C)*?

CS 2740 Knowledge Representation

Certainty factors

• Combination of multiple rules

(A in [0.5,1])
$$\land$$
 (B in [0.7,1]) \rightarrow C with CF = 0.8
(E in [0.8,1]) \land (D in [0.9,1]) \rightarrow C with CF = 0.9

Three possible solutions

$$CF(C) = \max[0.9; 0.8] = 0.9$$

 $CF(C) = 0.9*0.8 = 0.72$
 $CF(C) = 0.9 + 0.8 - 0.9*0.8 = 0.98$

Problems:

- Which solution to choose?
- All three methods break down after a sequence of inference rules

CS 2740 Knowledge Representation

M. Hauskrecht

Methods for representing uncertainty

Probability theory

- A well defined theory for modeling and reasoning in the presence of uncertainty
- A natural choice to replace certainty factors

Facts (propositional statements)

• Are represented via **random variables** with two or more values

Example: *Pneumonia* is a random variable

values: True and False

• Each value can be achieved with some probability:

$$P(Pneumonia = True) = 0.001$$

 $P(WBCcount = high) = 0.005$

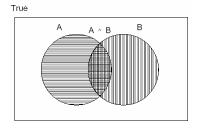
CS 2740 Knowledge Representation

Probability theory

- Well-defined theory for representing and manipulating statements with uncertainty
- **Axioms of probability:**

For any two propositions A, B.

- $0 \le P(A) \le 1$ 1.
- 2. P(True) = 1 and P(False) = 0
- $P(A \lor B) = P(A) + P(B) P(A \land B)$ 3.



CS 2740 Knowledge Representation

M. Hauskrecht

Modeling uncertainty with probabilities

Probabilistic extension of propositional logic.

- Propositions:
 - statements about the world
 - Represented by the assignment of values to **random** variables
- **Random variables:**
- Boolean Pneumonia is either True, False

Values Random variable

 Multi-valued Pain is one of {Nopain, Mild, Moderate, Severe} Random variable

 Continuous HeartRate is a value in <0;250>

Random variable Values

CS 2740 Knowledge Representation

M. Hauskrecht

Values

Probabilities

Measure the degree of our belief in propositions

P(Pneumonia = True) = 0.001

P(Pneumonia = False) = 0.999

P(WBCcount = high) = 0.005

Probability distribution

- Defines probabilities for all possible value assignments to a random variable
- Values are mutually exclusive

P(Pneumonia = True) = 0.001P(Pneumonia = False) = 0.999

Pneumonia	P (Pneumonia)
True	0.001
False	0.999

CS 2740 Knowledge Representation

M. Hauskrecht

Probability distribution

Defines probability for all possible value assignments

Example 1:

$$P(Pneumonia = True) = 0.001$$

 $P(Pneumonia = False) = 0.999$

Pneumonia	P (Pneumonia)
True	0.001
False	0.999

P(Pneumonia = True) + P(Pneumonia = False) = 1**Probabilities sum to 1!!!**

Example 2:

$$P(WBCcount = high) = 0.005$$

 $P(WBCcount = normal) = 0.993$
 $P(WBCcount = high) = 0.002$

WBCcount	P(WBCcount)
high	0.005
normal	0.993
low	0.002

CS 2740 Knowledge Representation

Joint probability distribution

Joint probability distribution (for a set variables)

• Defines probabilities for all possible assignments of values to variables in the set

Example: variables Pneumonia and WBCcount

P(pneumonia, WBCcount)

Is represented by 2×3 matrix

WBCcount

Pneumonia

	high	normal	low
True	0.0008	0.0001	0.0001
False	0.0042	0.9929	0.0019

CS 2740 Knowledge Representation

M. Hauskrecht

Joint probabilities

Marginalization

- reduces the dimension of the joint distribution
- Sums variables out

P(pneumonia, WBCcount) 2×3 matrix

WBCcount

P(*Pneumonia*)

Pneumonia

	high	normal	low	
True	0.0008	0.0001	0.0001	0.001
False	0.0042	0.9929	0.0019	0.999
	0.005	0.993	0.002	

P(WBCcount)

Marginalization (here summing of columns or rows)

CS 2740 Knowledge Representation

Full joint distribution

- the joint distribution for all variables in the problem
 - It defines the complete probability model for the problem

Example: pneumonia diagnosis

Variables: *Pneumonia, Fever, Paleness, WBCcount, Cough*Full joint defines the probability for all possible assignments of values to *Pneumonia, Fever, Paleness, WBCcount, Cough*

P(Pneumonia=T,WBCcount=High,Fever=T,Cough=T,Paleness=T)

P(Pneumonia=T,WBCcount=High,Fever=T,Cough=T,Paleness=F)

P(Pneumonia = T, WBCcount = High, Fever = T, Cough = F, Paleness = T)

... etc

CS 2740 Knowledge Representation

M. Hauskrecht

Conditional probabilities

Conditional probability distribution

• Defines probabilities for all possible assignments, given a fixed assignment to some other variable values

P(Pneumonia = true | WBCcount = high)

P(*Pneumonia* | *WBCcount*) 3 element vector of 2 elements

WBCcount

Pneumonia

	high	normal	low
True	0.08	0.0001	0.0001
False	0.92	0.9999	0.9999
	1.0	1.0	1.0

P(Pneumonia = true | WBCcount = high)

+P(Pneumonia = false | WBCcount = high)

CS 2740 Knowledge Representation

Conditional probabilities

Conditional probability

Is defined in terms of the joint probability:

$$P(A | B) = \frac{P(A, B)}{P(B)}$$
 s.t. $P(B) \neq 0$

Example:

$$P(pneumonia=true|WBCcount=high) = \frac{P(pneumonia=true,WBCcount=high)}{P(WBCcount=high)}$$

$$P(pneumonia = false | WBCcount = high) =$$

$$\frac{P(pneumonia = false, WBCcount = high)}{P(WBCcount = high)}$$

CS 2740 Knowledge Representation

M. Hauskrecht

Conditional probabilities

Conditional probability distribution.

$$P(A | B) = \frac{P(A, B)}{P(B)}$$
 s.t. $P(B) \neq 0$

 Product rule. Join probability can be expressed in terms of conditional probabilities

$$P(A,B) = P(A \mid B)P(B)$$

 Chain rule. Any joint probability can be expressed as a product of conditionals

$$P(X_{1}, X_{2}, ... X_{n}) = P(X_{n} | X_{1}, ... X_{n-1}) P(X_{1}, ... X_{n-1})$$

$$= P(X_{n} | X_{1}, ... X_{n-1}) P(X_{n-1} | X_{1}, ... X_{n-2}) P(X_{1}, ... X_{n-2})$$

$$= \prod_{i=1}^{n} P(X_{i} | X_{1}, ... X_{i-1})$$

CS 2740 Knowledge Representation

Bayes rule

Conditional probability.

$$P(A \mid B) = P(B \mid A)P(A)$$

Bayes rule:

$$P(A \mid B) = \frac{P(B \mid A)P(A)}{P(B)}$$

When is it useful?

 When we are interested in computing the diagnostic query from the causal probability

$$P(cause | effect) = \frac{P(effect | cause)P(cause)}{P(effect)}$$

- Reason: It is often easier to assess causal probability
 - E.g. Probability of pneumonia causing fever
 vs. probability of pneumonia given fever

CS 2740 Knowledge Representation

M. Hauskrecht

Bayes rule

Assume a variable A with multiple values $a_1, a_2, ... a_k$ Bayes rule can be rewritten as:

$$P(A = a_j | B = b) = \frac{P(B = b | A = a_j)P(A = a_j)}{P(B = b)}$$

$$= \frac{P(B = b | A = a_j)P(A = a_j)}{\sum_{i=1}^{k} P(B = b | A = a_j)P(A = a_j)}$$

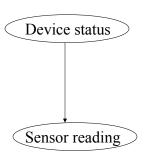
Used in practice when we want to compute:

$$\mathbf{P}(A \mid B = b)$$
 for all values of $a_1, a_2, \dots a_k$

CS 2740 Knowledge Representation

Bayes Rule in a simple diagnostic inference

- **Device** (equipment) operating *normally* or *malfunctioning*.
 - Operation of the device sensed indirectly via a sensor
- Sensor reading is either high or low



P(Device status)

normal	malfunctioning
0.9	0.1

P(Sensor reading | Device status)

Device\Sensor	high	low
normal	0.1	0.9
malfunctioning	0.6	0.4

CS 2740 Knowledge Representation

M. Hauskrecht

Bayes Rule in a simple diagnostic inference.

• **Diagnostic inference:** compute the probability of device operating normally or malfunctioning given a sensor reading

 $\mathbf{P}(\text{Device status } | \text{Sensor reading } = high) = ?$

$$= \begin{pmatrix} P(\text{Device status} = normal \mid \text{Sensor reading} = high) \\ P(\text{Device status} = malfunctio ning} \mid \text{Sensor reading} = high) \end{pmatrix}$$

- Note that typically the opposite conditional probabilities are given to us: they are much easier to estimate
- Solution: apply Bayes rule to reverse the conditioning variables

CS 2740 Knowledge Representation

Probabilistic inference

Various inference tasks:

• Diagnostic task. (from effect to cause)

$$\mathbf{P}(Pneumonia | Fever = T)$$

• Prediction task. (from cause to effect)

$$\mathbf{P}(Fever | Pneumonia = T)$$

• Other probabilistic queries (queries on joint distributions).

 $\mathbf{P}(Fever)$

P(Fever, ChestPain)

CS 2740 Knowledge Representation