
1

CS 2740 Knowledge Representation M. Hauskrecht

CS 2740 Knowledge Representation
Lecture 13

Milos Hauskrecht
milos@cs.pitt.edu
5329 Sennott Square

Structured descriptions

Based on lecture notes by Brachman and Levesque

CS 2740 Knowledge Representation M. Hauskrecht

Noun phrases
In FOL, all categories and properties of objects are represented by atomic

predicates.
– In some cases, these correspond to simple nouns in English such as

Person or City.
– In other cases, the predicates seem to be more like noun phrases such

as MarriedPerson or CanadianCity or AnimalWithFourLegs.
Intuitively, these predicates have an internal structure and connections to other

predicates.
– e.g. A married person must be a person.

• These connections hold by definition (by virtue of what the
predicates themselves mean), not by virtue of the facts we believe
about the world.

In FOL, there is no way to break apart a predicate to see how it is formed from
other predicates.

• In this lecture we will examine a logic that allows us to have both atomic
and non-atomic predicates: a description logic

2

CS 2740 Knowledge Representation M. Hauskrecht

Concepts, roles, constants
In a description logic, there are sentences that will be true or false (as in

FOL).
• In addition, there are three sorts of expressions that act like nouns and noun

phrases in English:
– concepts are like category nouns. E.g. Dog, Teenager, GraduateStudent
– roles are like relational nouns E.g. :Age, :Parent, :AreaOfStudy
– constants are like proper nouns E.g. johnSmith, chair128

• These correspond to unary predicates, binary predicates and constants
(respectively) in FOL.

Difference:
• unlike in FOL, concepts need not be atomic and can have semantic

relationships to each other: e.g. Student GraduateStudent
• roles will remain atomic

CS 2740 Knowledge Representation M. Hauskrecht

Description logic: syntax
• Three types of non-logical symbols:

– atomic concepts: Dog, Teenager, GraduateStudent
we also include a distinguished concept: Thing

– roles: (all are atomic) :Age, :Parent, :AreaOfStudy
– constants: johnSmith, chair128

• Four types of logical symbols:
– punctuation: [,], (,)
– positive integers: 1, 2, 3, ...
– concept-forming operators: ALL, EXISTS, FILLS, AND
– connectives: →, ,

3

CS 2740 Knowledge Representation M. Hauskrecht

Syntax of DL
• The set of concepts is the least set satisfying:

– Every atomic concept is a concept.
– If r is a role and d is a concept, then [ALL r d] is a concept.
– If r is a role and n is an integer, then [EXISTS n r] is a

concept.
– If r is a role and c is a constant, then [FILLS r c] is a

concept.
– If d1, ..., dk are concepts, then so is [AND d1, ..., dk].

• Three types of sentences in DL:
– If d and e are concepts, then (d e) is a sentence.
– if d and e are concepts, then (d e) is a sentence.
– If d is a concept and c is a constant, then (c → d) is a

sentence.

CS 2740 Knowledge Representation M. Hauskrecht

Syntax of DL
• Constants stand for individuals, concepts for sets of individuals, and roles

for binary relations.
• The meaning of a complex concept is derived from the meaning of its parts

the same way a noun phrases is:
– [EXISTS n r] describes those individuals that stand in relation r to at

least n other individuals
– [FILLS r c] describes those individuals that stand in the relation r to the

individual denoted by c
– [ALL r d] describes those individuals that stand in relation r only to

individuals that are described by d
– [AND d1 ... dk] describes those individuals that are described by all of

the di.
Example
• [AND Company

[EXISTS 7 :Director]
[ALL :Manager [AND Woman

[FILLS :Degree phD]]]
[FILLS :MinSalary $24.00/hour]]

“a company with at least 7 directors,
whose managers are all women with
PhDs, and whose min salary is $24/hr”

4

CS 2740 Knowledge Representation M. Hauskrecht

A DL knowledge base
A DL knowledge base is a set of DL sentences serving mainly to
• give names to definitions (defines)

e.g. (FatherOfDaughters
[AND Male

[EXISTS 1 :Child]
[ALL :Child Female]])

• give names to partial definitions
(subsumes)
e.g. (Dog [AND Mammal Pet

CarnivorousAnimal
[FILLS :VoiceCall barking]])

• assert properties of individuals
(satisfies)
e.g. (joe → [AND FatherOfDaughters Surgeon]])

“A FatherOfDaughters is precisely
a male with at least one child and
all of whose children are female”

“A dog is among other things a
mammal that is a pet and a
carnivorous animal whose voice
call includes barking”

“Joe is a FatherOfDaughters and
a Surgeon”

CS 2740 Knowledge Representation M. Hauskrecht

Semantics of DL
Interpretation similar to the FOL:
• for every constant c, I[c] ∈ D
• for every atomic concept a, I[a] ⊆ D
• for every role r, I[r] ⊆ D x D
Extend the interpretation to all concepts as subsets of
the domain:
• I[Thing] = D
• I[[ALL r d]] = {x ∈ D | for any y, if <x,y> ∈ I[r] then y ∈ I[d]}
• I[[EXISTS n r]] = {x ∈ D | there are at least n ys such that

<x,y> ∈ I[r]}
• I[[FILLS r c]] = {x ∈ D | <x,I[c]> ∈ I[r]}
• I[[AND d1 ... dk]] = I[d1] ∩ ... ∩ I[dk]

5

CS 2740 Knowledge Representation M. Hauskrecht

Semantics of DL
A sentence of DL will be true or false as follows:
• subsumes

(d e) iff I[d] ⊆ I[e]
• defines

(d e) iff I[d] = I[e]
• satisfies

(c → e) iff I[c] ∈ I[e]

CS 2740 Knowledge Representation M. Hauskrecht

Entailment in DL
Entailment in DL is defined as in FOL:
• A set of DL sentences S entails a sentence a (which we write

S |= a) iff for every interpretation under which S is true , a is
true as well

• Given a KB consisting of DL sentences, there are two basic
sorts of reasoning we consider:
– determining if KB |= (c → e)

whether a named individual satisfies a certain description
– determining if KB |= (d e)

whether one description is subsumed by another
– the other case, KB |= (d e) reduces to

KB |= (d e) and KB |= (d → e)

6

CS 2740 Knowledge Representation M. Hauskrecht

Entailment and validity
In some cases, an entailment will hold because the sentence in

question is valid (true for all interpretations).
• ([AND Doctor Female] Doctor)
• ([FILLS :Child sue] [EXISTS 1 :Child])
• (john → [ALL :Hobby Thing])
But in other cases, the entailment depends on the sentences in the

KB.
For example:
• ([AND Surgeon Female] Doctor)

is not valid.
But it is entailed by a KB that contains:
• (Surgeon [AND Specialist [FILLS :Specialty surgery]])
• (Specialist Doctor)

CS 2740 Knowledge Representation M. Hauskrecht

Computing subsumption
We begin with computing subsumption, that is, determining whether or not

KB |= (d e).
Some simplifications to the KB:
• we can remove (c → d) assertions from the KB
• we can replace (d e) in KB by (d [AND e a]), where a is a new

atomic concept
• we assume that in the KB for each (d e), the d is atomic and appears

only once on the LHS
• we assume that the definitions in the KB are acyclic

vs. cyclic (example: d [AND e f]), (e [AND d g])
Under these assumptions, it is sufficient to do the following:
• normalization: using the definitions in the KB, put d and e into a special

normal form, d’ and e’
• structure matching: determine if each part of e’ is matched by a part of d’

7

CS 2740 Knowledge Representation M. Hauskrecht

Normalization
Repeatedly apply the following operations to the two concepts:
• expand a definition: replace an atomic concept by its KB definition
• flatten an AND concept:

[AND ... [AND d e f] ...] [AND ... d e f ...]
• combine the ALL operations with the same role:

[AND ... [ALL r d] ... [ALL r e] ...] [AND ... [ALL r [AND d e]] ...]
• combine the EXISTS operations with the same role:

[AND ... [EXISTS n1 r] ... [EXISTS n2 r] ...]
[AND ... [EXISTS n r] ...] (where n =Max(n1,n2))

• remove a vacuous concept: Thing, [ALL r Thing], [AND]
• remove a duplicate expression
At the end, we end up with a normalized concept of the following form

[AND a1 ... ai
[FILLS r1 c1] ... [FILLS rj cj]
[EXISTS n1 s1] ... [EXISTS nk sk]
[ALL t1 e1] ... [ALL tm em]]

atomic

unique roles

CS 2740 Knowledge Representation M. Hauskrecht

Normalization example
[AND Person

[ALL :Friend Doctor]
[EXISTS 1 :Accountant]
[ALL :Accountant [EXISTS 1 :Degree]]
[ALL :Friend Rich]
[ALL :Accountant [AND Lawyer [EXISTS 2 :Degree]]]]

[AND Person
[EXISTS 1 :Accountant]
[ALL :Friend [AND Rich Doctor]]
[ALL :Accountant [AND Lawyer [EXISTS 1 :Degree]

[EXISTS 2 :Degree]]]]
[AND Person

[EXISTS 1 :Accountant]
[ALL :Friend [AND Rich Doctor]]
[ALL :Accountant [AND Lawyer [EXISTS 2 :Degree]]]]

8

CS 2740 Knowledge Representation M. Hauskrecht

Structure matching
Once we have replaced atomic concepts by their definitions, we
no longer need to use the KB.
To see if a normalized concept [AND e1 em] subsumes a normalized

concept [AND d1 ... dn], we do the following:
• For each component ej, check that there is a matching component di, where

– if ej is atomic or [FILLS r c], then di must be identical to it;
– if ej = [EXISTS 1 r], then di must be [EXISTS n r] or [FILLS r c];
– if ej = [EXISTS n r] where n >1, then di must be of the form

[EXISTS m r] where m ≥ n;
– if ej = [ALL r e’], then di must be [ALL r d’], where recursively e’

subsumes d’.
• In other words, for every part of the more general concept, there must be a

corresponding part in the more specific one.
• It can be shown that this procedure is sound and complete:

It returns YES iff KB |=(d e).

CS 2740 Knowledge Representation M. Hauskrecht

Structure matching example

9

CS 2740 Knowledge Representation M. Hauskrecht

Computing satisfaction
To determine if KB |= (c e), we use the following procedure:

– find the most specific concept d such that KB = (c d)
– determine whether or not KB |=(d e), as before.

• To a first approximation, the d we need is the AND of every di such that
(c di) ∈ KB

• Suppose the KB contains
(joe Person)
(canCorp [AND Company

[ALL :Manager Canadian]
[FILLS :Manager joe]]

• then the KB |= (joe Canadian).

• To find the d, a more complex procedure is used that propagates
constraints from one individual (canCorp) to another (joe).

• The individuals we need to consider need not be named by constants; they
can be individuals that arise from EXISTS (like Skolem constants).

CS 2740 Knowledge Representation M. Hauskrecht

Taxonomies
Two common sorts of queries in a DL system:
• given a query concept q, find all constants c such that KB |=(c q)

e.g. q is [AND Stock FallingPrice MyHolding]
• given a query constant c, find all atomic concepts a such that

KB |= (c a)
We can exploit the fact that concepts tend to be structured hierarchically to

answer queries like these more efficiently.
Taxonomies arise naturally out of a DL KB:
• the nodes are the atomic concepts that appear on the LHS of a sentence

(a d) or (a d) in the KB
• there is an edge from ai to aj if (ai aj) is entailed and there is no distinct

ak such that (ai ak) and (ak aj).
– can link every constant c to the most specific atomic concepts a in the

taxonomy such that KB |=(c a)
Positioning a new atom in a taxonomy is called classification

10

CS 2740 Knowledge Representation M. Hauskrecht

Classification
Consider adding (a d) to the KB.
• find S, the most specific subsumers of d: the atoms a such that KB |= (d

a), but nothing below a
• find G, the most general subsumees of d: the atoms a such that KB |= (a

d), but nothing above a
• if S ∩ G is not empty, then a is not new
• remove any links from atoms in G to atoms in S
• add links from all the atoms in G to a and from a to all the atoms in S
• reorganize the constants:
• for each constant c such that KB |= (c a) for all a ∈ S, but KB |= (c a)

for no a ∈ G, and where KB |= (c d), remove links from c to S and put a
single link from c to a.

Adding (a d) is similar, but with no subsumees.

CS 2740 Knowledge Representation M. Hauskrecht

Classification example

11

CS 2740 Knowledge Representation M. Hauskrecht

Using taxonomic structure
• Note that classification uses the structure of the taxonomy:

– If there is an a’ just below a in the taxonomy such that KB |= (d a’),
we never look below this a’. If this concept is sufficiently high in the
taxonomy (e.g. just below Thing), an entire subtree will be ignored.

• Queries can also exploit the structure:
– For example, to find the constants described by a concept q, we simply

classify q and then look for constants in the part of the taxonomy
subtended by q. The rest of the taxonomy not below q is ignored.

• This natural structure allows us to build and use very large knowledge
bases.
– the time taken will grow linearly with the depth of the taxonomy
– we would expect the depth of the taxonomy to grow logarithmically

with the size of the KB
– under these assumptions, we can handle a KB with thousands or even

millions of concepts and constants.

CS 2740 Knowledge Representation M. Hauskrecht

Taxonomies vs frame hierarchies

The taxonomies in DL look like the IS-A hierarchies in frames.
There is a big difference, however:
• in frame systems, the KB designer gets to decide what the fillers of the :IS-

A slot will be; the :IS-A hierarchy is constructed manually
• in DL, the taxonomy is completely determined by the meaning of the

concepts and the subsumption relation over concepts
For example, a concept such as
• [AND Fish [FILLS :Size large]]

must appear in the taxonomy below Fish even if it was first constructed to
be given the name Whale. It cannot simply be positioned below Mammal.

• To correct our mistake, we need to associate the name with a different
concept:

• [AND Mammal [FILLS :Size large] ...]

12

CS 2740 Knowledge Representation M. Hauskrecht

Inheritance and propagation

As in frame hierarchies, atomic concepts in DL inherit properties from concepts
higher up in the taxonomy.

• For example, if a Doctor has a medical degree, and Surgeon is below Doctor,
then a Surgeon must have a medical degree.

• This follows from the logic of concepts:
If KB |= (Doctor [EXISTS 1 :MedicalDegree])

and KB |=(Surgeon Doctor)
then KB |=(Surgeon [EXISTS 1 :MedicalDegree])

This is a simple form of strict inheritance
Also, as noted in computing satisfaction (e.g. with joe and canCorp), adding an

assertion like (c e) to a KB can cause other assertions (c’ e’) to be
entailed for other individuals.

• This type of propagation is most interesting in applications where
membership in classes is monitored and changes are significant.

CS 2740 Knowledge Representation M. Hauskrecht

Extensions

• A number of extensions to the DL language have been considered in the
literature:
– upper bounds on the number of fillers

• [AND [EXISTS 2 :Child] [AT-MOST 3 :Child]]
opens the possibility of inconsistent concepts

– sets of individuals: [ALL :Child [ONE-OF wally theodore]]
– relating the role fillers: [SAME-AS :President :CEO]
– qualified number restriction:

[EXISTS 2 :Child Female] vs.
[AND [EXISTS 2 :Child] [ALL :Child Female]]

– complex (non-atomic) roles: [EXISTS 2 [RESTR :Child Female]]
[ALL [RESTR :Child Female] Married] vs.
[ALL :Child [AND Female Married]]

• Each of these extensions adds extra complexity to the problem of calculating
subsumption.

13

CS 2740 Knowledge Representation M. Hauskrecht

Applications
Like production systems, description logics have been used in a number of sorts

of applications:
• interface to a DB

– relational DB, but DL can provide a nice higher level view of the data
based on objects

• working memory for a production system
– instead of a having rules to reason about a taxonomy and inheritance of

properties, this part of the reasoning can come from a DL system
• assertion and classification for monitoring

– incremental change to KB can be monitored with certain atomic concepts
declared “critical”

• contradiction detection in configuration
– for a DL that allows contradictory concepts, can alert the user when these

are detected. This works well for incremental construction of a concept
representing e.g. a configuration of a computer.

