CS 2740 Knowledge Representation
Lecture 12

Frame-based representation

Milos Hauskrecht
milos@cs.pitt.edu
5329 Sennott Square

CS 2740 Knowledge Representation M. Hauskrecht

Knowledge representation

Many different ways of representing the same knowledge.
Representation may make inferences easier or more difficult.

Example:
* How to represent: “Car #12 is red.”
Solution 1: ?

CS 2740 Knowledge Representation M. Hauskrecht

Knowledge representation

Many different ways of representing the same knowledge.
Representation may make inferences easier or more difficult.

Example:
* How to represent: “Car #12 is red.”
Solution 1: Red(carl2).
— It’s easy to ask “What’s red?”
— But we can’t ask “what is the color of car12?”
Solution 2: ?

CS 2740 Knowledge Representation M. Hauskrecht

Knowledge representation

Many different ways of representing the same knowledge.
Representation may make inferences easier or more difficult.

Example:
* How to represent: “Car #12 is red.”
Solution 1: Red(carl2).
— It’s easy to ask “What’s red?”
— But we can’t ask “what is the color of car12?”
Solution 2: Color (carl2, red).
— It’s easy to ask “What’s red?”
— It’s easy to ask “What is the color of car12?”
— Can’t ask “What property of pen7 has value red?”
Solution 3: ?

CS 2740 Knowledge Representation M. Hauskrecht

Knowledge representation

Many different ways of representing the same knowledge.
Representation may make inferences easier or more difficult.

Example:

* How to represent: “Car #12 is red.”
Solution 1: Red(carl2).
— It’s easy to ask “What’s red?”
— But we can’t ask “what is the color of car12?”
Solution 2: Color (carl2, red).
— It’s easy to ask “What’s red?”
— It’s easy to ask “What is the color of car12?”
— Can’t ask “What property of pen7 has value red?”
Solution 3: Prop(carl12, color, red).
— It’s easy to ask all these questions.

CS 2740 Knowledge Representation M. Hauskrecht

Knowledge representation

* Prop(Object, Property, Value)
» Called: object-property-value representation

* In FOL statements about the world, e.g. statements about
objects are scattered around

+ If we merge many properties of the object of the same type
into one structure we get the object-centered representation:

. Object
Prop(Object, Property1, Valuel)
Prop(Object, Property2, Value2) gﬁﬁiﬁﬁyy;
Prop(Object, Property-n, Value-n)
Property k

CS 2740 Knowledge Representation M. Hauskrecht

Object-centered representations

Objects: a natural way to organize the knowledge about
* physical objects:
— adesk has a surface-material, # of drawers, width, length, height, color,
procedure for unlocking, etc.
— some variations: no drawers, multi-level surface
e situations:

— aclass: room, participants, teacher, day, time, seating arrangement,
lighting, procedures for registering, grading, etc.

— leg of a trip: destination, origin, conveyance, procedures for buying

ticket, getting through customs, reserving hotel room, locating a car
rental etc.

Important: Objects enable grouping of procedures for determining the
properties of objects, their parts, interaction with parts

CS 2740 Knowledge Representation M. Hauskrecht

Frames

Predecessor of object-oriented systems

Two types of frames:
* individual frames

— represent a single object like a person, part of a trip
* generic frames

— represent categories of objects, like students

Example:
* A generic frame: Europian city
* Individual frames: Paris, London, Prague

CS 2740 Knowledge Representation M. Hauskrecht

Frames

* An individual frame is a named list of buckets called slots.
» What goes in the bucket is called a filler of the slot.
(frame-name
<slot-namel filler >
<slot-name? filler2 > ...)

CS 2740 Knowledge Representation M. Hauskrecht

Frames

Individual frames have a special slot called : INSTANCE-OF
whose filler is the name of a generic frame:
Example:
(toronto % lower case for individual frames
<:INSTANCE-OF CanadianCity>
<:Province ontario>
<:Population 4.5M>...)

Generic frames may have IS-A slot that includes generic frame
* (CanadianCity = % upper case for generic frames

<:IS-A City>

<:Province CanadianProvince>

<:Country canada>...)

CS 2740 Knowledge Representation M. Hauskrecht

Frames — inference control

Slots in generic frames can have associated procedures that are
executed ‘control’ inference

Two types of procedures:

* IF-NEEDED procedure; executes when no slot filler is given
and the value is needed

(Table
<:Clearance [[F-NEEDED computeClearance]> ...)

* IF-ADDED procedure. If a slot filler is given its effect may
propagate to other frames (say to assure constraints)

(Lecture
<:DayOfWeek WeekDay>
<:Date [IF-ADDED computeDayOfWeek]> ...)
* the filler for :DayOfWeek will be calculated when :Date is filled

CS 2740 Knowledge Representation M. Hauskrecht

Frames — defaults

(CanadianCity
<:IS-A City>
<:Province CanadianProvince>
<:Country canada>...)
(city134
<:INSTANCE-OF CanadianCity>

)
* A country filler is:

CS 2740 Knowledge Representation M. Hauskrecht

Frames — defaults

(CanadianCity
<:IS-A City>
<:Province CanadianProvince>
<:Country canada>...)

(city134
<:INSTANCE-OF CanadianCity>
)

* A country filler is: canada

(city135
<:INSTANCE-OF CanadianCity>
<:Country holland>)

* A country filler is:

CS 2740 Knowledge Representation

M. Hauskrecht

Frames — defaults

(CanadianCity
<:IS-A City>
<:Province CanadianProvince>
<:Country canada>...)

(city134
<:INSTANCE-OF CanadianCity>
)

* A country filler is: canada

(city135
<:INSTANCE-OF CanadianCity>
<:Country holland>)

* A country filler is: holland

CS 2740 Knowledge Representation

M. Hauskrecht

Frames — inheritance

» Procedures and fillers of more general frame are applicable to more specific
frame through the inheritance mechanism

(CoffeeTable
<:IS-A Table> ...)
(MahoganyCoffeeTable
<:IS-A CoffeeTable> ...)

(Elephant
<:IS-A Mammal>
<:Colour gray> ...)
(RoyalElephant
<:IS-A Elephant>
<:Colour white>)
(clyde
<:INSTANCE-OF RoyalElephant>)

CS 2740 Knowledge Representation M. Hauskrecht

Frames — reasoning

Basic reasoning goes like this:

1. user instantiates a frame, i.e., declares that an object or situation
exists

slot fillers are inherited where possible

3. inherited IFFADDED procedures are run, causing more frames
to be instantiated and slots to be filled.

If the user or any procedure requires the filler of a slot then:
1. if there is a filler, it is used

2. otherwise, an inherited IF-NEEDED procedure is run,
potentially causing additional actions

CS 2740 Knowledge Representation M. Hauskrecht

Frames — reasoning

Global reasoning:

* make frames be major situations or object-types you need to
flesh out

» express constraints between slots as IFF-NEEDED and IF-
ADDED procedures

» fill in default values when known

CS 2740 Knowledge Representation M. Hauskrecht

Frames — example

A system to assist in travel planning

Basic frame types:

» aTrip - be a sequence of TravelSteps, linked through slots

» aTravelStep - terminates in a LodgingStay

» aLodgingStay linked to arriving and departing TravelStep(s)
» TravelSteps includes LodgingStays of their origin and

destination
r i (tripl7
}= *l—E <INSTANCE-OF Trip=
wpl? <:FirstStep travelStepl7a>
mavelSeplia mavelStepl T travelSepl e < Traveler ronB>..)
lodzingStay] Ta lodsmzStay 1 Th

CS 2740 Knowledge Representation M. Hauskrecht

Frames - examples

TravelSteps and LodgingStays share some properties (e.g.,
:BeginDate, :EndDate, :Cost, :PaymentMethod), so we might create a
more general category as the parent frame for both of them:

(Trip (TripPart
<:FirstStep TravelStep= =:BeginDate>
<:Traveler Person= <:EndDate>
<:BeginDate Date= <:Cost=
<:TotalCost Price= ...} <:PaymentMethod= ...)
(TravelStep (LodgingStay
<:IS-A TnpPart= <:IS-A TripPart>
<:Means= < Arnving TravelStep=
<:Origin= =:Destination= =:Departing TravelStep=
<:NextStep> <:PreviousStep:> <:City=
< DepartureTime> < ArmvalTime™ <:LodgingPlace> ...}

<:0riginLodgingStay=
<DestinationLodgingStay> ._)

CS 2740 Knowledge Representation M. Hauskrecht

Frames - example

Embellish frames with defaults and procedures

(TravelStep
<:Means airplane= ..)

(TripPart
<:PaymentMethod wvisaCard> ..)
(TravelStep
<:Origin [IF-NEEDED {if no SELF:PreviousStep then newark}]=)
(Trip
< TotalCost Program notation {for an imaginary language):
[IF'NEEDED * EELF is the current frame being processed
{ xe~SELF FirstStep; v ifx refers to an individual frame, and y to a slot,
result—0; then xy refers to the filler of the slot
repeat
{ if exists x:NexiStep .
then s O if there is
{ resulte—result + x:Cost + a— relodgingStay

1 DestinationLodgingStay: Cost;
xe—xNextStep }
glse refurn result+x:Cost }}1]=)

CS 2740 Knowledge Representation M. Hauskrecht

Frames - example

(TravelStep
<:NextStep
[IF-ADDED
{if SELF:EndDate # SELF:NextStep:BeginDate
then
SELF:DestinationLodgingStay «—
SELF:NextStep:OniginLodgingStay «—
create new LodgingStay
with ‘BeginDate = SELF:EndDate
and with ‘EndDate = SELF:NextStep:BeginDate
and with :AmvingTravelStep = SELF
and with :DepartingTravelStep = SELF:NextStep
=
-

Note: default :City of LodgingStay, etc. can also be calculated:

(LodgingStay
=:City [IF-NEEDED {SELF:AmvingTravelStep:Destination}]...> ..}

CS 2740 Knowledge Representation M. Hauskrecht

Frames - example

Propose a trip to Toronto on Dec. 21, returning Dec. 22

(tripl38
<INSTANCE-OF Trip> the first thing to do is to create
~FirstStep travelStepl8a~) the trip and the first step
(travelStepl8a
<INSTANCE-OF TravelStep>
<:BeginDate 12/21/98>
<:EndDate 12/21/98> (travelStep18b
<:Means™ < INSTANCE-OF TravelStep>
<:Origin= = BeginDate 12/22/98>
<:Destination toronto= <:EndDate 12/22/98>
<:NextStep™> < PreviousStep> < Means>
<:DepartureTime™ < Arrival Time>) <:Origin toronto™
<:Destination™
< MNextStep=
< PreviousStep travelStepl8a>
the next thing to do is to create < DepartureTime™ < Arrival Time>)
the second step and link it to the first
by changing the NextStep ftravelStepl8a

< NextStep travel Stepl 8b>)

CS 2740 Knowledge Representation M. Hauskrecht

Frames - example

IF-ADDED on :NextStep then creates a LodgingStay:

travalStaplBz wnavsliaplEh
i BaginDatas 122158 ‘BoginDats 122055
FirstStap e 1 ‘EndData 1222188
Blsans

Mlsans
:Onign
I}q:r.n:::f);sm//
-

Previonsiup
Dspartmw Tims

Dng foress
R 20

ArmrivalTime
(lodzmgStay18a Dustinatonl sdgingSoy
< INSTANCE-OF LodzmeStay= e
=:BegimDate 12/21/98>
<:EndDate 12/22/98=
=:Armvmg TravelStep travelStepl8a-
<:Departing Travel Step travelStepl 3h=
=:City=
=:LodgingFlace=)

If requested, IF-NEEDED can provide :City for lodgingStay18a (toronto)

which could then be overridden by hand, if necessary
(e.g. usually stay in North York, not Teronto)

Similarly, apply default for :Means and default calc for :Onigin

CS 2740 Knowledge Representation M. Hauskrecht

Frames - example

wplE
Fimeitep

3 aizplans
Crigiz newark

Mzezs airplans
Iﬁe:!inmicwmr/ Testination newark
NaxtSeap M

PraviousStep PraviousSisg
So far... B e teD0 -
Arrs 024

TestinaticolodgingStay
Cost 8321.00

B4

City moetEYock)
‘LodringPlacs nevesl
Cost E1M4.75

Finally, we can use :TotalCost IF-NEEDED procedure (see above)
to calculate the total cost of the trip:

= resulte— 0, xe—travelStepl8a, x:NextStep=travelStepl8b
« resulte—0+3$321.00+%124 75; x« travelStep18b, x:NextStep=NIL
- return: result=5445.75+$321.00 = $766.75

CS 2740 Knowledge Representation M. Hauskrecht

Using a frame-based system

Main purpose of the above:
» embellish a sketchy description with defaults, implied values
* maintain consistency
 use computed values to:
— allow derived properties to look explicit
— avoid up front, potentially unneeded computation

Monitoring

hook to a DB, watch for changes in values

like an ES somewhat, but monitors are more object-centered,
inherited

CS 2740 Knowledge Representation M. Hauskrecht

Frames

Declarative vs procedural representation
— Frames allow both declarative and procedural control
* Inference is control via procedures

— Can be very tightly controlled, much like an object
oriented programming

Differences from OOP:
— Frames control via: instantiate/ inherit/trigger cycles

— OOP: objects sending messages

CS 2740 Knowledge Representation M. Hauskrecht

