
1

CS 2740 Knowledge Representation M. Hauskrecht

CS 2740 Knowledge Representation
Lecture 12

Milos Hauskrecht
milos@cs.pitt.edu
5329 Sennott Square

Frame-based representation

CS 2740 Knowledge Representation M. Hauskrecht

Knowledge representation
Many different ways of representing the same knowledge.

Representation may make inferences easier or more difficult.
Example:
• How to represent: “Car #12 is red.”

Solution 1: ?

2

CS 2740 Knowledge Representation M. Hauskrecht

Knowledge representation
Many different ways of representing the same knowledge.

Representation may make inferences easier or more difficult.
Example:
• How to represent: “Car #12 is red.”

Solution 1: Red(car12).
– It’s easy to ask “What’s red?”
– But we can’t ask “what is the color of car12?”
Solution 2: ?

CS 2740 Knowledge Representation M. Hauskrecht

Knowledge representation
Many different ways of representing the same knowledge.

Representation may make inferences easier or more difficult.
Example:
• How to represent: “Car #12 is red.”

Solution 1: Red(car12).
– It’s easy to ask “What’s red?”
– But we can’t ask “what is the color of car12?”
Solution 2: Color (car12, red).
– It’s easy to ask “What’s red?”
– It’s easy to ask “What is the color of car12?”
– Can’t ask “What property of pen7 has value red?”
Solution 3: ?

3

CS 2740 Knowledge Representation M. Hauskrecht

Knowledge representation
Many different ways of representing the same knowledge.

Representation may make inferences easier or more difficult.
Example:
• How to represent: “Car #12 is red.”

Solution 1: Red(car12).
– It’s easy to ask “What’s red?”
– But we can’t ask “what is the color of car12?”
Solution 2: Color (car12, red).
– It’s easy to ask “What’s red?”
– It’s easy to ask “What is the color of car12?”
– Can’t ask “What property of pen7 has value red?”
Solution 3: Prop(car12, color , red).
– It’s easy to ask all these questions.

CS 2740 Knowledge Representation M. Hauskrecht

Knowledge representation
• Prop(Object, Property, Value)
• Called: object-property-value representation
• In FOL statements about the world, e.g. statements about

objects are scattered around
• If we merge many properties of the object of the same type

into one structure we get the object-centered representation:

Prop(Object, Property1, Value1)
Prop(Object, Property2, Value2)
…
Prop(Object, Property-n, Value-n)

Object

Property 1
Property 2

Property k

4

CS 2740 Knowledge Representation M. Hauskrecht

Object-centered representations

Objects: a natural way to organize the knowledge about
• physical objects:

– a desk has a surface-material, # of drawers, width, length, height, color,
procedure for unlocking, etc.

– some variations: no drawers, multi-level surface
• situations:

– a class: room, participants, teacher, day, time, seating arrangement,
lighting, procedures for registering, grading, etc.

– leg of a trip: destination, origin, conveyance, procedures for buying
ticket, getting through customs, reserving hotel room, locating a car
rental etc.

Important: Objects enable grouping of procedures for determining the
properties of objects, their parts, interaction with parts

CS 2740 Knowledge Representation M. Hauskrecht

Frames

Predecessor of object-oriented systems

Two types of frames:
• individual frames

– represent a single object like a person, part of a trip
• generic frames

– represent categories of objects, like students

Example:
• A generic frame: Europian city
• Individual frames: Paris, London, Prague

5

CS 2740 Knowledge Representation M. Hauskrecht

Frames

• An individual frame is a named list of buckets called slots.
• What goes in the bucket is called a filler of the slot.

(frame-name
<slot-name1 filler1>
<slot-name2 filler2 > …)

CS 2740 Knowledge Representation M. Hauskrecht

Frames
Individual frames have a special slot called : INSTANCE-OF

whose filler is the name of a generic frame:
Example:

(toronto % lower case for individual frames
<:INSTANCE-OF CanadianCity>
<:Province ontario>
<:Population 4.5M>…)

Generic frames may have IS-A slot that includes generic frame
• (CanadianCity % upper case for generic frames

<:IS-A City>
<:Province CanadianProvince>
<:Country canada>…)

6

CS 2740 Knowledge Representation M. Hauskrecht

Frames – inference control

Slots in generic frames can have associated procedures that are
executed ‘control’ inference

Two types of procedures:
• IF-NEEDED procedure; executes when no slot filler is given

and the value is needed
(Table

<:Clearance [IF-NEEDED computeClearance]> …)
• IF-ADDED procedure. If a slot filler is given its effect may

propagate to other frames (say to assure constraints)
(Lecture

<:DayOfWeek WeekDay>
<:Date [IF-ADDED computeDayOfWeek]> …)

• the filler for :DayOfWeek will be calculated when :Date is filled

CS 2740 Knowledge Representation M. Hauskrecht

Frames – defaults

(CanadianCity
<:IS-A City>
<:Province CanadianProvince>
<:Country canada>…)

(city134
<:INSTANCE-OF CanadianCity>
..)

• A country filler is:

7

CS 2740 Knowledge Representation M. Hauskrecht

Frames – defaults

(CanadianCity
<:IS-A City>
<:Province CanadianProvince>
<:Country canada>…)

(city134
<:INSTANCE-OF CanadianCity>
..)

• A country filler is: canada
(city135

<:INSTANCE-OF CanadianCity>
<:Country holland>)

• A country filler is:

CS 2740 Knowledge Representation M. Hauskrecht

Frames – defaults

(CanadianCity
<:IS-A City>
<:Province CanadianProvince>
<:Country canada>…)

(city134
<:INSTANCE-OF CanadianCity>
..)

• A country filler is: canada
(city135

<:INSTANCE-OF CanadianCity>
<:Country holland>)

• A country filler is: holland

8

CS 2740 Knowledge Representation M. Hauskrecht

Frames – inheritance

• Procedures and fillers of more general frame are applicable to more specific
frame through the inheritance mechanism
(CoffeeTable

<:IS-A Table> ...)
(MahoganyCoffeeTable

<:IS-A CoffeeTable> ...)

(Elephant
<:IS-A Mammal>
<:Colour gray> ...)

(RoyalElephant
<:IS-A Elephant>
<:Colour white>)

(clyde
<:INSTANCE-OF RoyalElephant>)

CS 2740 Knowledge Representation M. Hauskrecht

Frames – reasoning

Basic reasoning goes like this:
1. user instantiates a frame, i.e., declares that an object or situation

exists
2. slot fillers are inherited where possible
3. inherited IF-ADDED procedures are run, causing more frames

to be instantiated and slots to be filled.

If the user or any procedure requires the filler of a slot then:
1. if there is a filler, it is used
2. otherwise, an inherited IF-NEEDED procedure is run,

potentially causing additional actions

9

CS 2740 Knowledge Representation M. Hauskrecht

Frames – reasoning

Global reasoning:
• make frames be major situations or object-types you need to

flesh out
• express constraints between slots as IF-NEEDED and IF-

ADDED procedures
• fill in default values when known

CS 2740 Knowledge Representation M. Hauskrecht

Frames – example
A system to assist in travel planning
Basic frame types:
• a Trip - be a sequence of TravelSteps, linked through slots
• a TravelStep - terminates in a LodgingStay
• a LodgingStay linked to arriving and departing TravelStep(s)
• TravelSteps includes LodgingStays of their origin and

destination

10

CS 2740 Knowledge Representation M. Hauskrecht

Frames - examples

CS 2740 Knowledge Representation M. Hauskrecht

Frames - example

11

CS 2740 Knowledge Representation M. Hauskrecht

Frames - example

CS 2740 Knowledge Representation M. Hauskrecht

Frames - example

12

CS 2740 Knowledge Representation M. Hauskrecht

Frames - example

CS 2740 Knowledge Representation M. Hauskrecht

Frames - example

13

CS 2740 Knowledge Representation M. Hauskrecht

Using a frame-based system
Main purpose of the above:
• embellish a sketchy description with defaults, implied values
• maintain consistency
• use computed values to:

– allow derived properties to look explicit
– avoid up front, potentially unneeded computation

Monitoring
• hook to a DB, watch for changes in values
• like an ES somewhat, but monitors are more object-centered,

inherited

CS 2740 Knowledge Representation M. Hauskrecht

Frames

• Declarative vs procedural representation
– Frames allow both declarative and procedural control

• Inference is control via procedures
– Can be very tightly controlled, much like an object

oriented programming

• Differences from OOP:
– Frames control via: instantiate/ inherit/trigger cycles
– OOP: objects sending messages

