
1

CS 2740 Knowledge Representation M. Hauskrecht

CS 2740 Knowledge Representation
Lecture 10

Milos Hauskrecht
milos@cs.pitt.edu
5329 Sennott Square

First order logic inference.

CS 2740 Knowledge Representation M. Hauskrecht

Inference with generalized resolution rule

• Proof by refutation:
– Prove that is unsatisfiable
– resolution is refutation-complete

• Main procedure (steps):
1. Convert to CNF with ground terms and

universal variables only
2. Apply repeatedly the resolution rule while keeping track

and consistency of substitutions
3. Stop when empty set (contradiction) is derived or no more

new resolvents (conclusions) follow

α¬,KB

α¬,KB

2

CS 2740 Knowledge Representation M. Hauskrecht

Resolution example

)()(wQwP ∨¬)()(ySyQ ∨¬)()(zSzR ∨¬)()(xRxP ∨

KB

)(AS¬

α¬
, , , ,

CS 2740 Knowledge Representation M. Hauskrecht

Resolution example

)()(wQwP ∨¬)()(ySyQ ∨¬)()(zSzR ∨¬)()(xRxP ∨

KB

)(AS¬

α¬

)()(wSwP ∨¬

, , , ,

}/{ wy

3

CS 2740 Knowledge Representation M. Hauskrecht

Resolution example

)()(wQwP ∨¬)()(ySyQ ∨¬)()(zSzR ∨¬)()(xRxP ∨

KB

)(AS¬

α¬

)()(wSwP ∨¬

, , , ,

}/{ wy

)()(wRwS ∨

}/{ wx

CS 2740 Knowledge Representation M. Hauskrecht

Resolution example

)()(wQwP ∨¬)()(ySyQ ∨¬)()(zSzR ∨¬)()(xRxP ∨

KB

)(AS¬

α¬

)()(wSwP ∨¬

, , , ,

}/{ wy

)()(wRwS ∨

}/{ wx

)(wS

}/{ wz

4

CS 2740 Knowledge Representation M. Hauskrecht

Resolution example

)()(wQwP ∨¬)()(ySyQ ∨¬)()(zSzR ∨¬)()(xRxP ∨

KB

)(AS¬

α¬

)()(wSwP ∨¬

, , , ,

}/{ wy

)()(wRwS ∨

}/{ wx

)(wS

}/{ wz

}/{ Aw

Contradiction
α=|KB

CS 2740 Knowledge Representation M. Hauskrecht

Answer predicate

5

CS 2740 Knowledge Representation M. Hauskrecht

Disjunctive answers

CS 2740 Knowledge Representation M. Hauskrecht

Undecidability of resolution-refutation

6

CS 2740 Knowledge Representation M. Hauskrecht

Efficiency of resolution

For the propositionalized KB
- worst case is exponential in the number literals

Speed ups of the resolution-refutation algorithm:
– Clause elimination. Assume a clause contains literal r such

that ¬ r does not appear in any other clause. The clause
cannot lead to the contradiction {} and hence can be
eliminated.

– Tautology. A clause with a literal and its negation. Any path
to {} can bypass tautology.

– Subsumed clause. A clause for which there exists another
clause with only a subset of its literals. A path to {} need only
to pass through the short clause.

CS 2740 Knowledge Representation M. Hauskrecht

Efficiency of resolution

Speed-ups:
• Ordering strategies

– many possible ways to order search, but best and simplest is
unit preference

– prefer to resolve unit clauses first
– Why? Given unit clause and another clause, the resolvent is a

smaller one
• Set of support

– KB is usually satisfiable, so not very useful to resolve among
clauses with ancestors in KB

– contradiction arises from interaction with the negated theorem
– always resolve with at least one clause that has an ancestor in

the negated theorem

7

CS 2740 Knowledge Representation M. Hauskrecht

Efficiency of resolution

• Special treatment for equality
– instead of using axioms for equality
– use new inference rule: paramodulation

• Demodulation rule

• Example:

• Paramodulation rule: more powerful
• Resolution+paramodulation give a refutation-complete proof

theory for FOL

failtzUNIFY ≠=),(1σ

)(
)()),((

aP
xxfafP =

)],([
],[

21

2121

tSUBST
ttz

k

k

σφφ
φφφ

∨∨
=∨∨

K

K

where includes term z][zkφ

CS 2740 Knowledge Representation M. Hauskrecht

Efficiency of resolution

Speed-ups:
• Sorted logic

– terms get sorts:
– x: Male mother:[Person Female]
– keep taxonomy of sorts
– only unify P(s) with P(t) when sorts are compatible assumes

only “meaningful” paths will lead to {}

8

CS 2740 Knowledge Representation M. Hauskrecht

Sentences in Horn normal form
• Horn normal form (HNF) in the propositional logic

– a special type of clause with at most one positive literal

• A clause with one literal, e.g. A, is also called a fact
• A clause representing an implication (with a conjunction of

positive literals in antecedent and one positive literal in
consequent), is also called a rule

• Inference for definite clauses:
– Modus ponens inference rule

)()(DCABA ∨¬∨¬∧¬∨

))(()(DCAAB ⇒∧∧⇒Typically written as:

CS 2740 Knowledge Representation M. Hauskrecht

Horn normal form in FOL
First-order logic (FOL)

– adds variables, works with terms
Generalized modus ponens rule:

Generalized modus ponens:
• is sound and complete for definite clauses and no functions;
• In general it is semidecidable
• Not all first-order logic sentences can be expressed in the HNF

form

),(
,',',' 2121

τσ
τφφφφφφ

SUBST
nn ⇒∧∧ KK

),()',(s.t.on substituti a ii SUBSTSUBSTi φσφσσ =∀=

9

CS 2740 Knowledge Representation M. Hauskrecht

Forward and backward chaining

Two inference procedures based on modus ponens for Horn KBs:
• Forward chaining

Idea: Whenever the premises of a rule are satisfied, infer the
conclusion. Continue with rules that became satisfied.
Typical usage: If we want to infer all sentences entailed by the
existing KB.

• Backward chaining (goal reduction)
Idea: To prove the fact that appears in the conclusion of a rule
prove the premises of the rule. Continue recursively.
Typical usage: If we want to prove that the target (goal)
sentence is entailed by the existing KB.α

CS 2740 Knowledge Representation M. Hauskrecht

Forward chaining example
• Forward chaining

Idea: Whenever the premises of a rule are satisfied, infer the
conclusion. Continue with rules that became satisfied

),(),(),(zxFasterzyFasteryxFaster ⇒∧

KB: R1:

R2:

R3:

Assume the KB with the following rules:
),()()(yxFasterySailboatxSteamboat ⇒∧

),()()(zyFasterzRowBoatySailboat ⇒∧

)(TitanicSteamboat

)(MistralSailboat

)(PondArrowRowBoat

Theorem:),(PondArrowTitanicFaster

F1:

F2:

F3:

?

10

CS 2740 Knowledge Representation M. Hauskrecht

Forward chaining example

)(TitanicSteamboat
)(MistralSailboat

KB: R1:
R2:
R3:

F1:
F2:
F3:)(PondArrowRowBoat

),(),(),(zxFasterzyFasteryxFaster ⇒∧

),()()(yxFasterySailboatxSteamboat ⇒∧
),()()(zyFasterzRowBoatySailboat ⇒∧

?

CS 2740 Knowledge Representation M. Hauskrecht

Forward chaining example

)(TitanicSteamboat
)(MistralSailboat

KB: R1:
R2:
R3:

F1:
F2:

),(MistralTitanicFaster

F3:)(PondArrowRowBoat

F4:

),(),(),(zxFasterzyFasteryxFaster ⇒∧

),()()(yxFasterySailboatxSteamboat ⇒∧
),()()(zyFasterzRowBoatySailboat ⇒∧

Rule R1 is satisfied:

11

CS 2740 Knowledge Representation M. Hauskrecht

Forward chaining example

)(TitanicSteamboat
)(MistralSailboat

KB: R1:
R2:
R3:

F1:
F2:

),(MistralTitanicFaster

F3:)(PondArrowRowBoat

F4:

),(),(),(zxFasterzyFasteryxFaster ⇒∧

),()()(yxFasterySailboatxSteamboat ⇒∧
),()()(zyFasterzRowBoatySailboat ⇒∧

),(PondArrowMistralFaster
Rule R2 is satisfied:
F5:

Rule R1 is satisfied:

CS 2740 Knowledge Representation M. Hauskrecht

Forward chaining example

)(TitanicSteamboat
)(MistralSailboat

KB: R1:
R2:
R3:

F1:
F2:

),(MistralTitanicFaster

F3:)(PondArrowRowBoat

F4:

),(),(),(zxFasterzyFasteryxFaster ⇒∧

),()()(yxFasterySailboatxSteamboat ⇒∧
),()()(zyFasterzRowBoatySailboat ⇒∧

),(PondArrowMistralFaster
Rule R2 is satisfied:
F5:
Rule R3 is satisfied:

),(PondArrowTitanicFasterF6:

Rule R1 is satisfied:

12

CS 2740 Knowledge Representation M. Hauskrecht

Backward chaining example

• Backward chaining (goal reduction)
Idea: To prove the fact that appears in the conclusion of a rule
prove the antecedents (if part) of the rule & repeat recursively.

),()()(yxFasterySailboatxSteamboat ⇒∧

),()()(zyFasterzRowBoatySailboat ⇒∧

),(),(),(zxFasterzyFasteryxFaster ⇒∧

)(TitanicSteamboat

)(MistralSailboat

)(PondArrowRowBoat

KB:

Theorem:),(PondArrowTitanicFaster

R1:

R2:

R3:

F1:

F2:

F3:

CS 2740 Knowledge Representation M. Hauskrecht

Backward chaining example

),(PondArrowTitanicFaster

)(TitanicSteamboat

R1

)(PondArrowSailboat

),()()(yxFasterySailboatxSteamboat ⇒∧

),(PondArrowTitanicFaster
}/,/{ PondArrowyTitanicx

)(TitanicSteamboat

)(MistralSailboat

)(PondArrowRowBoat

F1:

F2:

F3:

13

CS 2740 Knowledge Representation M. Hauskrecht

Backward chaining example

)(TitanicSteamboat
R1

),(PondArrowTitanicFaster

R2
)(TitanicSailboat

)(PondArrowRowBoat)(PondArrowSailboat

),(PondArrowTitanicFaster
}/,/{ PondArrowzTitanicy

),()()(zyFasterzRowBoatySailboat ⇒∧

)(TitanicSteamboat

)(MistralSailboat

)(PondArrowRowBoat

F1:

F2:

F3:

CS 2740 Knowledge Representation M. Hauskrecht

Backward chaining example

),(PondArrowyFaster
)(TitanicSteamboat

R1

),(PondArrowTitanicFaster

R2

)(PondArrowRowBoat
),(yTitanicFaster

R3

)(PondArrowSailboat

)(TitanicSailboat

)(TitanicSteamboat

)(MistralSailboat

)(PondArrowRowBoat

F1:

F2:

F3:

14

CS 2740 Knowledge Representation M. Hauskrecht

Backward chaining example

),(PondArrowyFaster
)(TitanicSteamboat

R1

),(PondArrowTitanicFaster

R2

)(PondArrowRowBoat
),(yTitanicFaster

R3

)(TitanicSteamboat
R1

)(PondArrowSailboat

)(MistralSailboat

)(TitanicSailboat

)(TitanicSteamboat

)(MistralSailboat

)(PondArrowRowBoat

F1:

F2:

F3:

}/{ Mistraly

CS 2740 Knowledge Representation M. Hauskrecht

Backward chaining example

),(PondArrowMistralFaster
)(TitanicSteamboat

R1

),(PondArrowTitanicFaster

R2

)(PondArrowRowBoat
),(yTitanicFaster

R3

)(TitanicSteamboat
R1

)(PondArrowSailboat

)(MistralSailboat

)(TitanicSailboat

)(TitanicSteamboat

)(MistralSailboat

)(PondArrowRowBoat

F1:

F2:

F3:

}/{ Mistraly

15

CS 2740 Knowledge Representation M. Hauskrecht

Backward chaining example

),(PondArrowMistralFaster
)(TitanicSteamboat

R1

),(PondArrowTitanicFaster

R2

)(PondArrowRowBoat
),(yTitanicFaster

R3

)(TitanicSteamboat
R1

R2

)(PondArrowRowBoat

)(PondArrowSailboat

)(MistralSailboat

)(MistralSailboat

)(TitanicSailboat

)(TitanicSteamboat

)(MistralSailboat

)(PondArrowRowBoat

F1:

F2:

F3:

}/{ Mistraly

CS 2740 Knowledge Representation M. Hauskrecht

Backward chaining

),(PondArrowyFaster
)(TitanicSteamboat

R1

),(PondArrowTitanicFaster

R2

)(PondArrowRowBoat
),(yTitanicFaster

R3

)(TitanicSteamboat
R1

)(MistralSailboat

R2

)(PondArrowRowBoat

)(PondArrowSailboat

)(MistralSailboat

)(TitanicSailboat

y must be bound to
the same term

16

CS 2740 Knowledge Representation M. Hauskrecht

Properties of backward chaining

• Depth-first recursive proof search:
– space is linear in size of proof�

• Incomplete due to possible infinite loops�
– fix by checking current goal against every goal on stack�

• Inefficient due to repeated subgoals (both success and failure)
– fix using caching of previous results (extra space)�

• Widely used for logic programming

CS 2740 Knowledge Representation M. Hauskrecht

Logic programming: Prolog

• Algorithm = Logic + Control�

• Basis:
– backward chaining with Horn clauses + bells & whistles

• Widely used in Europe, Japan (basis of 5th Generation project)

• Program = set of clauses
– head :- literal1, … literaln.

Example:
criminal(X) :- american(X), weapon(Y),

sells(X,Y,Z), hostile(Z).�

17

CS 2740 Knowledge Representation M. Hauskrecht

Logic programming: Prolog

Example:
criminal(X) :- american(X), weapon(Y),

sells(X,Y,Z), hostile(Z).

• Depth-first, left-to-right backward chaining
• Built-in predicates for arithmetic etc., e.g., X is Y*Z+3
• Built-in predicates that have side effects (e.g., input and output

predicates, assert/retract predicates)

• Closed-world assumption ("negation as failure")
– e.g., given alive(X) :- not dead(X).
– alive(joe) succeeds if dead(joe) fails

