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First order logic inference.  
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Inference with generalized resolution rule

• Proof by refutation:
– Prove that                        is unsatisfiable
– resolution is refutation-complete

• Main procedure (steps):
1. Convert                        to CNF with ground terms and 

universal variables only
2. Apply repeatedly the resolution rule while keeping track 

and consistency of substitutions
3. Stop when empty set (contradiction) is derived or no more 

new resolvents (conclusions) follow

α¬,KB

α¬,KB
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Resolution example

)()( wQwP ∨¬ )()( ySyQ ∨¬ )()( zSzR ∨¬)()( xRxP ∨

KB

)(AS¬

α¬
, , , ,
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Resolution example

)()( wQwP ∨¬ )()( ySyQ ∨¬ )()( zSzR ∨¬)()( xRxP ∨
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)(AS¬

α¬

)()( wSwP ∨¬
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Resolution example

)()( wQwP ∨¬ )()( ySyQ ∨¬ )()( zSzR ∨¬)()( xRxP ∨
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)(AS¬

α¬

)()( wSwP ∨¬
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)()( wRwS ∨
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Resolution example

)()( wQwP ∨¬ )()( ySyQ ∨¬ )()( zSzR ∨¬)()( xRxP ∨
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)(AS¬
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Resolution example

)()( wQwP ∨¬ )()( ySyQ ∨¬ )()( zSzR ∨¬)()( xRxP ∨

KB

)(AS¬

α¬

)()( wSwP ∨¬

, , , ,

}/{ wy

)()( wRwS ∨

}/{ wx

)(wS

}/{ wz

}/{ Aw

Contradiction
α=|KB

CS 2740 Knowledge Representation M. Hauskrecht

Answer predicate
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Disjunctive answers
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Undecidability of resolution-refutation
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Efficiency of resolution

For the propositionalized KB 
- worst case is exponential in the number literals

Speed ups of the resolution-refutation algorithm:
– Clause elimination. Assume a clause contains literal r such 

that ¬ r does not appear in any other clause.  The clause 
cannot lead to the contradiction {} and hence can be 
eliminated.  

– Tautology. A clause with a literal and its negation. Any path 
to {} can bypass tautology.

– Subsumed clause. A clause for which  there exists another 
clause with only a subset of its literals. A path to {} need only 
to pass through the short clause. 
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Efficiency of resolution

Speed-ups:
• Ordering strategies

– many possible ways to order search, but best and simplest is 
unit preference

– prefer to resolve unit clauses first
– Why? Given unit clause and another clause, the resolvent is a 

smaller one
• Set of support

– KB is usually satisfiable, so not very useful to resolve among 
clauses with ancestors in KB

– contradiction arises from interaction with the negated theorem
– always resolve with at least one clause that has an ancestor in 

the negated theorem



7

CS 2740 Knowledge Representation M. Hauskrecht

Efficiency of resolution

• Special treatment for equality
– instead of using axioms for equality 
– use new inference rule: paramodulation

• Demodulation rule

• Example:

• Paramodulation rule: more powerful
• Resolution+paramodulation give a refutation-complete proof 

theory for FOL

failtzUNIFY ≠= ),( 1σ

)(
)()),((

aP
xxfafP =

)],([
],[

21

2121

tSUBST
ttz

k

k

σφφ
φφφ

∨∨
=∨∨

K

K

where           includes term z][zkφ

CS 2740 Knowledge Representation M. Hauskrecht

Efficiency of resolution

Speed-ups:
• Sorted logic

– terms get sorts:
– x: Male mother:[Person Female]
– keep taxonomy of sorts
– only unify P(s) with P(t) when sorts are compatible assumes 

only “meaningful” paths will lead to {}
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Sentences in Horn normal form
• Horn normal form (HNF) in the propositional logic

– a special type of clause with at most one positive literal

• A clause with one literal, e.g. A, is also called a fact
• A clause representing an implication (with a conjunction of 

positive literals in antecedent and one positive literal in 
consequent), is also called a rule

• Inference for definite clauses:
– Modus ponens inference rule

)()( DCABA ∨¬∨¬∧¬∨

))(()( DCAAB ⇒∧∧⇒Typically written as:
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Horn normal form in FOL
First-order logic (FOL)

– adds variables, works with terms
Generalized modus ponens rule:

Generalized modus ponens:
• is sound and complete for definite clauses and no functions;
• In general it is semidecidable
• Not all first-order logic sentences can be expressed in the HNF 

form  
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Forward and backward chaining

Two inference procedures based on modus ponens for Horn KBs:
• Forward chaining

Idea: Whenever the premises of a rule are satisfied, infer the 
conclusion. Continue with rules that became satisfied.
Typical usage: If we want to infer all sentences entailed by the 
existing KB.

• Backward chaining (goal reduction)
Idea: To prove the fact that appears in the conclusion of a rule 
prove the premises of the rule. Continue recursively.
Typical usage: If we want to prove that the target (goal) 
sentence        is entailed by the existing KB.α
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Forward chaining example
• Forward chaining

Idea: Whenever the premises of a rule are satisfied, infer the 
conclusion. Continue with rules that became satisfied

),(),(),( zxFasterzyFasteryxFaster ⇒∧

KB: R1:

R2:

R3:

Assume the KB with the following rules:
),()()( yxFasterySailboatxSteamboat ⇒∧

),()()( zyFasterzRowBoatySailboat ⇒∧

)(TitanicSteamboat

)(MistralSailboat

)(PondArrowRowBoat

Theorem: ),( PondArrowTitanicFaster

F1:

F2:

F3:

?
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Forward chaining example

)(TitanicSteamboat
)(MistralSailboat

KB: R1:
R2:
R3:

F1:
F2:
F3: )(PondArrowRowBoat

),(),(),( zxFasterzyFasteryxFaster ⇒∧

),()()( yxFasterySailboatxSteamboat ⇒∧
),()()( zyFasterzRowBoatySailboat ⇒∧

?
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Forward chaining example

)(TitanicSteamboat
)(MistralSailboat

KB: R1:
R2:
R3:

F1:
F2:

),( MistralTitanicFaster

F3: )(PondArrowRowBoat

F4:

),(),(),( zxFasterzyFasteryxFaster ⇒∧

),()()( yxFasterySailboatxSteamboat ⇒∧
),()()( zyFasterzRowBoatySailboat ⇒∧

Rule R1 is satisfied:
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Forward chaining example

)(TitanicSteamboat
)(MistralSailboat

KB: R1:
R2:
R3:

F1:
F2:

),( MistralTitanicFaster

F3: )(PondArrowRowBoat

F4:

),(),(),( zxFasterzyFasteryxFaster ⇒∧

),()()( yxFasterySailboatxSteamboat ⇒∧
),()()( zyFasterzRowBoatySailboat ⇒∧

),( PondArrowMistralFaster
Rule R2 is satisfied:
F5:

Rule R1 is satisfied:
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Forward chaining example

)(TitanicSteamboat
)(MistralSailboat

KB: R1:
R2:
R3:

F1:
F2:

),( MistralTitanicFaster

F3: )(PondArrowRowBoat

F4:

),(),(),( zxFasterzyFasteryxFaster ⇒∧

),()()( yxFasterySailboatxSteamboat ⇒∧
),()()( zyFasterzRowBoatySailboat ⇒∧

),( PondArrowMistralFaster
Rule R2 is satisfied:
F5:
Rule R3 is satisfied:

),( PondArrowTitanicFasterF6:

Rule R1 is satisfied:
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Backward chaining example

• Backward chaining (goal reduction)
Idea: To prove the fact that appears in the conclusion of a rule 
prove the antecedents (if part) of the rule & repeat recursively. 

),()()( yxFasterySailboatxSteamboat ⇒∧

),()()( zyFasterzRowBoatySailboat ⇒∧

),(),(),( zxFasterzyFasteryxFaster ⇒∧

)(TitanicSteamboat

)(MistralSailboat

)(PondArrowRowBoat

KB:

Theorem: ),( PondArrowTitanicFaster

R1:

R2:

R3:

F1:

F2:

F3:
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Backward chaining example

),( PondArrowTitanicFaster

)(TitanicSteamboat

R1

)(PondArrowSailboat

),()()( yxFasterySailboatxSteamboat ⇒∧

),( PondArrowTitanicFaster
}/,/{ PondArrowyTitanicx

)(TitanicSteamboat

)(MistralSailboat

)(PondArrowRowBoat

F1:

F2:

F3:



13

CS 2740 Knowledge Representation M. Hauskrecht

Backward chaining example

)(TitanicSteamboat
R1

),( PondArrowTitanicFaster

R2
)(TitanicSailboat

)(PondArrowRowBoat)(PondArrowSailboat

),( PondArrowTitanicFaster
}/,/{ PondArrowzTitanicy

),()()( zyFasterzRowBoatySailboat ⇒∧

)(TitanicSteamboat

)(MistralSailboat

)(PondArrowRowBoat

F1:

F2:

F3:
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Backward chaining example

),( PondArrowyFaster
)(TitanicSteamboat

R1

),( PondArrowTitanicFaster

R2

)(PondArrowRowBoat
),( yTitanicFaster

R3

)(PondArrowSailboat

)(TitanicSailboat

)(TitanicSteamboat

)(MistralSailboat

)(PondArrowRowBoat

F1:

F2:

F3:
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Backward chaining example

),( PondArrowyFaster
)(TitanicSteamboat

R1

),( PondArrowTitanicFaster

R2

)(PondArrowRowBoat
),( yTitanicFaster

R3

)(TitanicSteamboat
R1

)(PondArrowSailboat

)(MistralSailboat

)(TitanicSailboat

)(TitanicSteamboat

)(MistralSailboat

)(PondArrowRowBoat

F1:

F2:

F3:

}/{ Mistraly
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Backward chaining example

),( PondArrowMistralFaster
)(TitanicSteamboat

R1

),( PondArrowTitanicFaster

R2

)(PondArrowRowBoat
),( yTitanicFaster

R3

)(TitanicSteamboat
R1

)(PondArrowSailboat

)(MistralSailboat

)(TitanicSailboat

)(TitanicSteamboat

)(MistralSailboat

)(PondArrowRowBoat

F1:

F2:

F3:

}/{ Mistraly
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Backward chaining example

),( PondArrowMistralFaster
)(TitanicSteamboat

R1

),( PondArrowTitanicFaster

R2

)(PondArrowRowBoat
),( yTitanicFaster

R3

)(TitanicSteamboat
R1

R2

)(PondArrowRowBoat

)(PondArrowSailboat

)(MistralSailboat

)(MistralSailboat

)(TitanicSailboat

)(TitanicSteamboat

)(MistralSailboat

)(PondArrowRowBoat

F1:

F2:

F3:

}/{ Mistraly
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Backward chaining

),( PondArrowyFaster
)(TitanicSteamboat

R1

),( PondArrowTitanicFaster

R2

)(PondArrowRowBoat
),( yTitanicFaster

R3

)(TitanicSteamboat
R1

)(MistralSailboat

R2

)(PondArrowRowBoat

)(PondArrowSailboat

)(MistralSailboat

)(TitanicSailboat

y must be bound to
the same term
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Properties of backward chaining

• Depth-first recursive proof search: 
– space is linear in size of proof�

• Incomplete due to possible infinite loops�
– fix by checking current goal against every goal on stack�

• Inefficient due to repeated subgoals (both success and failure)
– fix using caching of previous results (extra space)�

• Widely used for logic programming
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Logic programming: Prolog

• Algorithm = Logic + Control�

• Basis: 
– backward chaining with Horn clauses + bells & whistles

• Widely used in Europe, Japan (basis of 5th Generation project)

• Program = set of clauses 
– head :- literal1, … literaln.

Example:
criminal(X) :- american(X), weapon(Y), 

sells(X,Y,Z), hostile(Z).�
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Logic programming: Prolog

Example:
criminal(X) :- american(X), weapon(Y), 

sells(X,Y,Z), hostile(Z).

• Depth-first, left-to-right backward chaining
• Built-in predicates for arithmetic etc., e.g., X is Y*Z+3
• Built-in predicates that have side effects (e.g., input and output 

predicates, assert/retract predicates)

• Closed-world assumption ("negation as failure")
– e.g., given alive(X) :- not dead(X).
– alive(joe) succeeds if dead(joe) fails


