
University of Pittsburgh
CS 2710 Foundations of Artificial Intelligence Handout 4
Professor Milos Hauskrecht September 17, 2020

Problem assignment 4

Due: Thursday, September 24, 2020

Problem 1. Adversarial search.

Consider the game search tree in the figure below

3 7 88 5 62 0 1 5 2 4 10 2

MAX

MIN

MAX

A

B C D

E F G H I J K

M O P Q S T W YL N R U V X

Assume the first player is the max player and the values at leaves of the tree reflect his/her
utility. The opponent wants the same utility to be minimized.

Part a. Compute the minimax values for each node in the tree? What move should the
first player choose? What is the solution path the rational players would play.

Part b. Assume we use alpha-beta algorithm to explore the game tree and we do this in
the left-to-right order and determine the players strategies. List all nodes that are cut off
from the tree and are never examined by the alpha beta procedure (see lecture notes for an
example of how the alpha beta procedure works).

Part c. Assume we use alpha-beta algorithm but explore the tree in the right-to-left order.
What nodes would not need to be examined by the alpha-beta algorithm and pruned away?



Problem 2. Tic-tac-toe-10 player

The goal of this assignment is to implement a program capable of playing Tic-tac-toe on
the 10× 10 board. The 3× 3 version of the game is discussed in the textbook. Both 3× 3
and 10× 10 versions of the Tic-tac-toe are related to the old Japanese game of Go.

Rules. The game is played on a rectangular 10 × 10 board. There are two players, one
plays crosses, the other plays zeroes. The players alternate their moves. The first one to
achieve five of his marks in a row, a column or on a diagonal wins.

Programs. The programs you were given include: tictactoe.py, player.py, heuristics.py,
naive heuristics.py and main.py files. The tictactoe.py file defines the board and the game
that is played by two specific players.

The player.py class defines a player and is performing k-ply game search up to level k for
the current board position to make its move.

The heuristics.py defines the basic (but decent) board evaluation heuristics. Check com-
ments in the file on how to define self.patterns variable that drive the evaluation. Briefly,
each pattern in the patterns is associated with a weight that defines how much (if it is
present in a row, a column or on a diagonal) it contributes to the configuration score. The
class naive heuristics.py defines a subclass of that class and is equipped with a simpler
heuristics. Please note a player may be customized with its own heuristic and you will be
asked to write one yourself.

Finally, the main.py file initializes the two players, their heuristics and the game the two
players play. It runs two games where each player starts once. The settings given for the
players are k = 2 (2-ply search). Also note you can see or hide each move by setting
print step parameter of the Player class. The main file you received currently runs one
player (player A) equipped with a naive heuristics, and one (Player B) with the basic
heuristics.

Part a. A tic-tac-toe player: naive vs basic board evaluation heuristics.

Our objective is to create a decent player of the game. Ideally a player would search
the complete game tree and compute the best move while considering the best (rational)
responses of its opponent. However, in this and many other games we do not have the luxury
of exploring the full game tree before making the move. Hence we consider a limited-depth
exploration of the game tree, where nodes at the depth (or cutoff) limit are evaluated using
a board evaluation heuristic. If the depth of the tree is k we refer to the procedure as to
k-ply search. The default level is k=2. Please note the both k and heuristics influence the
quality of the player.

Modify main.py (you do not need to submit the modified file) so that it plays 10 matches
of Player A (basic heuristics) and Player B (naive heuristics), so that both Players start 5



times. Report the table with results you have achieved in terms of wins, draws and losses
of Player A vs Player B. Summarize and analyze the results. Explain why the specific set
of results were obtained.

Part b. A tic-tac-toe player: basic vs basic board heuristics.

Now change the Player B who played the naive heuristics in Part a and let it use the same
basic heuristics as used by Player A. Play Player A vs B 10 times by always starting Player
A. Summarize and analyze the results. Explain the observed results.

Part c. A tic-tac-toe player: basic vs basic board heuristics using different k-ply levels.

Change the Player B from Part b that plays the basic heuristics to use k = 1 ply search
Player A should still use the basic heuristic and k = 2 ply search. Play Player A vs B 10
times so that both Players start 5 times. Summarize and analyze the results. Explain the
observed results.

Optional. Try to play (one against the other) two players with the basic heuristics, such
that one uses k = 3 and the other one k = 2 ply search. Analyze the results and compare
to k = 2 and k = 1 players.

Part d. A tic-tac-toe player: my heuristics vs basic heuristics.

One way we can improve a tic-tac-toe player is to improve its evaluation heuristic. The
basic heuristic function (file heuristics.py) analyzes the game configurations and identifies
different line configurations of X and O symbols (in rows, columns and on diagonals). The
line configurations are assigned a score which is then used to calculate the utility of the
position.

Write a subclass of Heuristics class (defined in heuristics.py) called MyHeuristics and in-
clude it in file my heuristics.py. Hint: Check how we defined the NaiveHeuristics class as
a subclass of the Heuristics class.

Define Player A that uses MyHeuristics and Player B that uses the basic heuristics. Set
k = 2 for both. Experiment with the different versions of MyHeuristics by trying: (1)
different scoring of line configurations (2) addition of new line configurations. Once you
think your heuristic performs well play 10 games of Player A vs B such that each player
starts 5 times and report the results. Clearly describe in the report the changes in heuristics
you have made including the intuition behind these changes. Please submit your final version
of my heuristics.py file.

Play for credit. The heuristics submitted by all students in the respective myheuristics.py

files will be run against each other in a tournament. Pairs of programs will play each 10
times. The competition will consist of a group stage and knockout rounds. The winners
(first three submissions) will receive extra-credit for the assignment and will be announced
in the class.


