
University of Pittsburgh
CS 2710 Foundations of Artificial Intelligence Handout 3
Professor Milos Hauskrecht September 10, 2020

Problem assignment 3

Due: Thursday, September 17, 2020

Problem 1. Constraint satisfaction.

Constraint propagation procedures allow us to infer assignments of values to state
variables that are consistent and inconsistent with constraints defining the goal
configurations. These assignments are represented through equations (assignments
of values to variables) and disequations (invalid assignments).

Consider the following graph where each node is a variable and an arc is labeled
with a number. Each variable can take on integer values from 0 to 9 (including
0 and 9). Each arc represent a constraint the two variables connected by the arc
must satisfy. The constraint is that each variable must have the same value modulo
the number on arc. For example, the arc connecting x, z with value 3 represents
a constraint x mod 3 = z mod 3. This constraint can be satisfied by assignments
x = 2, z = 2 or x = 5, z = 2, or x = 7, z = 1.

x

y

z

w

t v

u
3

5

4

3

3

12

Assume we know the assignments x = 2, y = 0 and t = 0. Give variable values that
would be inferred by:

• forward checking

• arc consistency

The two procedures differ in terms of completeness of the inferences they make
and their computational complexity. In the following we briefly summarize the two
procedures in terms of inferences they make. Examples of the two procedures were
given during the lecture.

Forward checking. Infers:

• Disequations (invalid assignments): from equations (assignments) and con-
straints.

• Equations: from disequations and constraints through the exhaustion of alter-
natives.

Arc consistency Infers:

• Disequations: from equations, disequations and constraints. (Variables and
their remaining values in a constraint are rechecked for consistency in both
directions accross the constraint that is represented by an arc.)

• Equations: from disequations and constraints through the exhaustion of alter-
natives.

Problem 2. Traveling Salesman Problem

The Traveling Salesman problem (TSP hereafter) is a classical graph-theoretical
problem. It involves a traveling salesman who has to visit each of the cities in
a given network before returning to his starting point, at which time his trip is
complete. The objective is to find the cheapest tour, that is the shortest route that
passes through each city exactly once and returns back to start.

The variants of TSP arise in the design of telephone networks and integrating cir-
cuits, in planning construction lines, and in the programming of industrial robots,
to mention a few applications. In all of these, the ability to find inexpensive tours
of the graphs in question can be quite crucial.

In this assignment, we explore simulated annealing and genetic algorithm so-
lutions to the TSP problem. The TSP we use consists of n cities placed on a two
dimensional map. The (x, y) coordinates define locations of cities. The objective is
to find a tour with the shortest overall length. The distance between the two cities
is the Manhattan distance of their locations:

dM (A, B) = |x(A) − x(B)| + |y(A) − y(B)|.

To implement a TSP solver we need a means for representing a TSP, a tour and
methods for computing the length of a tour. Python code supporting the definition
of the TSP problem is given to you in TSP.py file. The TSP file supports methods
that let you generate a random tour, calculate its length, mutate a tour locally, as
well as, combine (crossover) two tours.

Part a. Simulated annealing algorithm

Simulated annealing explores the space of all tours by generating random local rear-
rangements of the current tour. The new tour is accepted when its energy (distance)
is smaller than the energy of the current tour. The tour with a higher energy is ac-
cepted randomly with probability e∆E/T , where ∆E is the energy difference between
current and new energy, and T is the temperature parameter that is changed during
the search. The probabilistic choice is a solution to the problem of local optima.

Implement a simulated annealing function

sim anneal(TSP problem, no of steps, init temperature)

for solving the TSP problem, and include it in the SA.py. The algorithm should:

• start from a random tour and should return the energy function of the tour
found.

• Use the mutation mechanism to implement random rearrangements of the
tour. A mutation of a tour consists of reversing the direction in which a section
of the tour is traversed. To illustrate this, assume a tour: ABCDEF in the 6
city TSP. Reversal of CDE yields the new mutated tour ABEDCF . Method
permute tour given to you in TSP.py accomplishes this task.

• Use a linear cooling schedule in which the temperature is decreased linearly
in k +1 steps, starting from the initial temperature Tinit and ending up in the
zero temperature. The temperature in the ith step is:

Ti =
Tinit

k
∗ (k − i), (1)

which gives T0 = Tinit in the 0-th step, and Tk = 0 in the k-th step. The
number of steps k and the initial temperature Tinit are the parameters of the
simulated annealing function (no of steps, init temperature).

• Collect and print the following results and statistics:

– Initial tour and its distance (energy);

– Initial temperature T init;

– Number of tours tried;

– Number of tours accepted;

– The best tour found and its distance (energy).

Hint: To write the annealing algorithm you must implement a probabilistic choice
of configurations with higher path energies. To do this you can proceed as follows:

1. Compute p = e∆E/T (it must give the value 0 ≤ p ≤ 1).

2. Choose randomly a number x from interval [0, 1]. In Python you can im-
plement the random choice using function random.random() in random.py

module.

3. Accept if x ≤ p, reject otherwise.

All of the above simulated annealing code should be included in the file SA.py. In
addition, the code should run simulated annealing algorithm on the standard TSP
problem with the number of simulation steps = 100,000 and initial temperature
= 100. The standard TSP is given in file TSP.py (in var Standard Cities) and
consists of 60 cities.

Part b. Experiments with the simulated annealing program

Experiment with your simulated annealing algorithm on the standard TSP problem
while varying parameters of the simulated annealing procedure: the initial temper-
ature and the number of simulation steps. Choose values of the parameters such
that your algorithm is able to find the solution with the path cost at least as small
as 120. Submit the solution you have found, its distance (energy) and collected
statistics in your report. See if you can beat our best solution of 72.892862. You
do not have to submit programs you use to generate results for this part (part b) of
the assignment.

Part c. Cooling schedule competition

In part (a) you were asked to implement a linear cooling schedule. However the
linear schedule may not be the best option. Propose a new cooling schedule which
you think performs better. Describe it briefly in the report and write a Python code
implementing the corresponding procedure.

Write program mySA.py that calls your cooling schedule procedure and applies it to
accept or reject 20,000 candidate tours. Your program should randomly restart the
annealing 10 times and report the average energy of the resulting tour. The authors
of the three best programs (in terms of average best tour energy) shall receive extra
credit of up to 20 points.

Problem 3. Genetic algorithm

The disadvantage of the simulated annealing algorithm is that at any point in time it
keeps only one current configuration and that next step configurations are obtained
using “local” changes. Thus, it may take a number of steps till one gets to explore
good configurations. The genetic algorithm (GA) attempts to alleviate the problems
by keeping a limited number of “current” configurations and by combining (more
radically) two good quality solutions hoping that the combination will lead to a
larger improvement in the quality.

Please familiarize yourself with the code in Populationpy, GA.py, that implements
the GA algorithm with crossover, mutation, elite selection and culling. The param-
eters are defined in GA.py file. The default configuration is: Number of generations
500, Population size 500, Mutation probability 0.05, Elite selection 0.05 and culling
0.05.

Collect the statistics and fitness of the best individual in the last generation for the
different settings of parameters of the genetic algorithm procedure. Please report
results found by varying:

• (a) Number of Generations in the range between 200 and 1000 in increments
of 100 while keeping all other parameters fixed at the default setting.

• (b) Population size in the range between 250 to 750 in increments of 50 with
the rest of the parameters set to the defaults.

• (c) Mutation probability in the range between 0.00 and 0.25 in increments of
0.05 with the remaining parameters set to the default values.

• (d) Culling in between 0 to 0.25 in increments of 0.05

• (e) Elite selection in 0 to 0.25 in increments of 0.05 with the remaining pa-
rameters fixed at the defaults.

Please analyze the results and report your findings either in tables (one for each
experiment) or graphs. Draw conclusions based on the experiments for each of the
parameters and the effect the parameters have on the solution.

