University of Pittsburgh
CS 2710 Foundations of Artificial Intelligence Handout 2
Professor Milos Hauskrecht September 3, 2020

Problem assignment 2
Due: Thursday, September 10, 2020

Problem 1

Consider the following graph that represents road connections between different cities.
The weights on links represent driving distances between connected cities. Let S be the
initial city and G the destination.

i 5
—(O—)

Part a. Show how the uniform cost search works by giving the order in which the
nodes of the search tree are expanded. Is the path found by the algorithm optimal?

Part b. Assume the following set of the straight line distances between G and other
cities.

S |A|B|C|D|E|F
10107 (219 |62

Show how the greedy search algorithm with the straight-line distance heuristic works. Is
the path the algorithm finds optimal?

Part ¢. Show how the A* with the straight-line distance heuristic works. Is the path
found optimal?

Problem 2

The idea of the bidirectional search is to search both forward from the initial state
and backward from the goal, and to stop when the state expanded in one direction has
already been expanded in the other direction. The solution path is created by merging
both paths at that state. Typically, the bidirectional search relies on the breadth-first
search, which is guaranteed to be complete, and is also optimal (assuming all edge costs
are the same).

Suppose we try to enhance bidirectional search with an additional heuristic and apply
A* to solve it. That is, from each direction the search procedure will use A* search with
an admissible heuristic function to decide which node to expand first. We will have two
admissible heuristic functions, one for each direction — one that under-estimates the cost
from a node to the goal, and one that under-estimates the cost from a node to the initial
state. We assume we can compute both the predecessors and successors of a node. For
the sake of simplicity assume that all links between the states have the same cost.

Part a. Is the bidirectional A* search complete? If so, give a proof of completeness. If
not, explain why not or give a counterexample.

Part b. Is the bidirectional A* optimal? If so, provide a proof of optimality. If not,
explain why not or give a counterexample.

Problem 3. Search for the Puzzle 8 problem.

In this problem we continue our exploration of search algorithms for the Puzzle 8 prob-
lem. We will use the evaluation-function driven search procedure to incorporate various
exploration strategies. The procedure searches the space by expanding the nodes with
the minimum evaluation function value first. You are given three files:

o Puzzle8.py which gives the definition of the Puzzle 8 problem, and TreeNode,
HashTable, and Priority queue structures implemented as classes. Please note
this file is slightly different from Puzzle8.py file you were given for homework
assignment 1 !!!

e f_driven_search.py which implements an evaluation function driven search algo-
rithm. Briefly the procedure searches the space by expanding the nodes in the
exploration fringe with the minimum f_value. These nodes are kept in the priority
queue.

e heuristic.py that calculates the h function for the uniform cost search.

Part a. Uniform cost search

The f_driven_search.py code we gave you allows you to modify/update the evaluation
function driven search, as well as, use your own heuristic function by importing a new
definition of the h_function. This function together with the g-value for the node (au-
tomatically calculated) defines the f-value of the node. The files given to you implement
the uniform cost search where h(n) = 0 and hence f(n) = g(n).

Remark: The uniform cost search algorithm for the Puzzle-8 problem in fact implements
the breadth-first search since all operator costs are one. The difference is that we simulate
the breadth-first search through a more flexible evaluation-function representation and
priority queue operations.

The f_driven_search.py currently does not calculate any search statistics similarly to
the initial code you were initially given in homework assignment 1. Please define a
new version of the eval_function_driven_search(problem) such that it calculates the
following stats:

e the total number of nodes generated

e the total number of nodes expanded

e the maximum length of the queue

e the length of the solution

Include the new function in file main3a.py. Run it on at least first three initial game
configurations and report statistics.

Part b. Uniform cost search with elimination of state repeats

Modify the function eval_function_driven_search(problem) in the main3a.py file to
include the check and elimination of all state repeats. Call the new function:

eval _function_driven_search_repeats(problem) and include it in file main3b.py. Your
program should be able to solve all 5 example configurations.

Part c. A* algorithm with the misplaced tile heuristic

Our next step is to implement the Ax search procedure with the misplaced tiles heuristic.
In order to do so you will need to write a new h_function definition and import it to
the Puzzle8.py file. Please write heuristicl.py file that implements the hfunction using

the misplaced tile heuristic. Run main3b.py with Puzzle8.py importing the h_function
from heuristicl.py instead of the current heuristic.py

The program should run on all five test examples and collect the same set of statistics
as above.

Part d. A* algorithm with the Manhattan distance heuristic

Similarly to Part c, write heuristic2.py that implements the Manhattan distance heuris-
tic. Run main3b.py with Puzzle8.py importing the h_function from heuristic2.py.

Part e. Analysis of results

Analyze the performance of all methods (parts a through d) in terms of the collected
statistics and include the analysis in the report. You should:

e Summarize the results of the methods in different tables, one table for every con-
figuration tested: Uniform cost search, Uniform cost search with elimination of
repeats, A* with misplaced tile heuristic, A* with Manhattan distance heuristics.

e Which method is the best in terms of the respective statistics? Explain why.

e State which heuristic would you suggest to use and explain why.
In addition, answer the following questions.

e Would A* work without state repeats elimination? Why or why not?

e Assume we create a heuristic function hs such that it averages the values of the
misplaced tile heuristic (h1) and the Manhattan distance heuristic (hz):

ha(n) = % (ha(n) + ha(n)] .

Is hs an admissible heuristic?

Code to be submitted for Problem 3: Files main3a.py, main3db.py, heuristicl.py,
heuristic2.py as specified above. Please note the TA for the course will run your code
to check if the code is consistent with the reported results.

