
University of Pittsburgh
CS 2710 Foundations of Artificial Intelligence Handout 1
Professor Milos Hauskrecht August 27, 2020

Problem assignment 1
Due: Thursday, September 3, 2020

Please note that homework assignments should be submitted in the electronic form at 4:15pm
on the due date before regularly scheduled class. This concerns both the reports and pro-
grams. The reports should be submitted in the pdf format. If you include any hand-made
writings or drawings in the report please make sure they fit the page and are legible. The
submissions (or their parts) that are not legible with a pdf reader will be left ungraded and
receive zero score. Please see Canvas for detailed instructions on how to submit the reports
and programs.

Problem 1. Map coloring problem

Assume we want to solve the map coloring problem in Figure 1. The goal is to color a
map such that no countries on the map that share a border are assigned the same color.
The number of colors is limited. In this assignment assume you have three different colors:
Red, Green, and Blue.

Figure 1: Map coloring problem. Left: spatial layout. Right: abstraction of the spatial
layout where nodes correspond to countries and links to borders.

Part a. Formulate the map coloring problem as a (graph) search problem by defining its
initial state, operators and the goal condition.

Part b. What is the search space size of the formulation in Part a? If the exact calculation
of the search space size becomes hard, give a reasonable upper bound estimate.



Part c. Think of another possible formulation of the map coloring problem as the search
problem. What is the search space size of this new formulation? Compare the first two
formulations in terms of the search space size they define and determine which formulation
appears more advantageous.

Part d. Do you think you can solve the problem? If yes, please submit the solution.

Problem 2. Traveler problem

Consider the following graph representing road connections between different cities. Let S
be the initial city and G the destination.

Part a. Show how the breadth-first-search (with no state repeats checks) would search the
graph. That is, give an order (of first 10 nodes) in which the nodes could be expanded. Use
the alphabetical order to order the equivalent choices.

Part b. Show how the depth-first search with the elimination of cyclic state repeats would
search the graph by giving an order of first 10 expanded nodes. Use the alphabetical order
to break the ties (i.e., equivalent node choices).

Part c. Show how the breadth-first-search with elimination of cyclic repeats only would
search the graph. Give an order of first 10 expanded nodes. Again, use the alphabetical
order to break the ties (i.e., equivalent node choices).

Part d. Show how the breadth-first search that checks for all state repeats would search the
graph. Give an order of first 10 expanded nodes.

Problem 3. A problem-solving agent for the 8-puzzle problem.

In this problem we will implement a number of uninformed search techniques and test them
on the 8-puzzle problem. The rules for submitting the programs are described in Canvas.

The 8-puzzle problem is described in the textbook (Russell and Norvig) on page 68. We



have also studied the problem in lecture 2 (see lecture notes). The problem formulation of
the 8-puzzle problem consists of:

• States: different tile configurations

• Operators: moves of an empty position

• Initial configuration.

• Goal configuration:
1 2 3
4 5 6
7 8 0

where 0 represents the empty (blank) tile. Note that the goal configuration we consider
is different from the configuration in the textbook!

• Solution (path) cost: the number of moves of the empty tile.

Part a. Run the plain breadth-first search algorithm.

To get you started in the assignment, you are given a python code implementation of the
breadth-first search method for 8-puzzle. You can download the code using the assignment
link in Canvas. The two files given are:

• Puzzle8.py that defines the Puzzle 8 problem, search tree nodes, a hash table, and 5
different game configurations to solve labeled as Example 1, ..., Example 5

• bfs.py that implements the basic breadth first search procedure and runs it in on 4
out of 5 initial game configurations.

Once you run the code in bfs.py, you should see the solutions for four initial configurations.
Three of the initial configurations are shown below:

Example 1:
1 2 3
4 6 0
7 5 8

Example 3:
4 1 2
7 6 3
0 5 8

Example 4:
4 1 2
7 6 3
5 8 0

Familiarize yourself with the python code given to you before proceeding to Part b.

Part b. Breadth-first search statistics.

Write a breadth first search stats procedure that modifies the breadth first search pro-
cedure given to you in file bfs.py such that it is able to collect and print the following



statistics:

• the total number of nodes expanded;

• the total number of nodes generated;

• the maximum length of the queue structure;

• the length of the solution path (number of moves)

The statistics should be printed after the example is solved and should be followed by
the solution (move) sequence. Include the breadth first search stats procedure in the
bfs stats.py file and use it to execute it on the first four initial configurations similarly
to bfs.py.

Part c. Breadth-first search with the elimination of cyclic state repeats.

The basic breadth-first search procedure does not check for and eliminate state repeats. In
general, there are two strategies to eliminate state repeats:

• Elimination of cyclic state repeats: Do not expand the node if its state is the same as
in one its ancestors in the search tree.

• Elimination of all state repeats: Do not expand the node if its state has been expanded
before.

Note: Please see lecture notes for Lecture 3 on the elimination of state repeats.

To implement the bfs with cycling check repeats you will need to write two pieces of code:

• function check cyclic repeats(node) that takes a tree node and checks if the state
linked to that node is also associated with one of its parent nodes in the search tree.
The function should return true if the cyclic repeat indeed occurred.

• function breadth first search cycles that modifies your code in Part b, such that prior
to the node expansion it calls check cyclic repeats(node) to check if we entered the
cycle.

Include the above two functions in the bfs cycle.py file and run it on the same set of four
examples we included in bfs.py file. You may also try to solve the initial configuration in
Example5. The function should collect and print the same statistics as in Part b.



Part d. Breadth-first search with the elimination of all state repeats.

Implement a breadth first search repeats procedure that: (1) checks for and eliminates all
state repeats, (2) collects and prints the same statistics as in Part b. Include the procedure
in the bfs repeats.py file and run it on all five test examples.

To implement the elimination of all state repeats please use the hash table implemented in
Puzzle8.py file.

Hint: Similarly to the breadth first search with cyclic state repeats we recommend to check
the node (its state) for repeats just before the node is expanded, that is, after it is extracted
from the queue. Note that you do not have to check for cyclic repeats since the all repeats
test subsumes the cyclic repeats test.

Part e. Analysis of the results

Analyze the performance of all three bfs methods (parts b,c,d) in terms of the collected
statistics and include the analysis in the report. More specifically you should:

• Summarize the results of the different bfs methods in different tables, one table for
every example tried.

• Compare the methods in terms of the respective statistics. Which one is the best?
Explain why.

Part f. Depth-limited depth-first search

Implement a depth-limited depth-first search procedure depth first search limit(problem, limit).
Please note that the depth of the node is stored in the g field of the Treenode structure,
so you can easily check if the node satisfies the depth limit. Your procedure should return
the optimal solution if it can be reached within the search limit. Also your limited-depth
depth-first search procedure should try to check for and avoid the branches of the tree that
are suboptimal given the previously seen nodes and states. To do so please use the hash table
and its ability to keep an arbitrary positive value for each key. Briefly, for each explored
state always keep in the hash the length of the minimum path to that state as observed
during the search process. Finally, the procedure should calculate and keep the same search
statistics as used in Parts b, c, d.

Include the depth-limited depth-first search procedure in the dfs limit.py file and run it
using the limit 10 on Examples 1, 2 and 3. Analyze the results of your dfs procedure and
compare it to results obtained for the different versions of bfs in Parts b, c, d.



Programs to be submitted with your assignement. In addition to the report you
should submit the folowing python files implementing Parts b,c,d,f: bfs stats.py, bfs cycles.py,
bfs repeats.py and dfs limit.py. These files and the code in them will be run by the TA to
check for the consistency with your results.


