
M. Hauskrecht

CS 2710 Foundations of AI
Lecture 3

Milos Hauskrecht
milos@pitt.edu
5329 Sennott Square

Uninformed search methods

mailto:milos@pitt.edu

M. Hauskrecht

Announcements

Homework assignment 1 is out
• Due on Thursday, September 3, 2020 at 4:15pm before the

lecture
• Report and programming part:

– Programming part involves Puzzle 8 problem.

Homework submission:
• Electronic via Canvas
• Separate file upload for

– Reports (pdf file)
– Programs (zip file)

M. Hauskrecht

Announcements

TA assigned to the course:

Yoones Rezaei
Email: yor10@pitt.edu

Office hours: TBA tomorrow

mailto:yor10@pitt.edu

M. Hauskrecht

Search

• Search (process)
– The process of exploration of the search space

• The efficiency of the search depends on:
– The search space and its size
– Method used to explore (traverse) the search space
– Condition to test the satisfaction of the search objective

(what it takes to determine I found the desired goal object

CS 2710 Foundations of AI

M. Hauskrecht

Search

• Search (process)
– The process of exploration of the search space

• The efficiency of the search depends on:
– The search space and its size
– Method used to explore (traverse) the search space
– Condition to test the satisfaction of the search objective

(what it takes to determine I found the desired goal object

CS 2710 Foundations of AI

M. Hauskrecht

Search process
Exploration of the state space through successive application of
operators from the initial state
• Search tree = structure representing the exploration trace

– Is built on-line during the search process
– Branches correspond to explored paths, and leaf nodes to

the exploration fringe

Arad

Zerind Sibiu Timisoara

Oradea Fagaras Rimnicu
Vilcea

Arad OradeaArad

CS 2710 Foundations of AI

M. Hauskrecht

Search tree

Arad

Zerind Sibiu Timisoa
ra

Oradea Fagaras Rimnicu
Vilcea

Arad OradeaArad Arad Lugoj

A branch in the search tree
= a path in the graph

CS 2710 Foundations of AI

State space
graph

Search tree

M. Hauskrecht

General search algorithm

General-search (problem, strategy)
initialize the search tree with the initial state of problem
loop

if there are no candidate states to explore return failure
choose a leaf node of the tree to expand next according to strategy
if the node satisfies the goal condition return the solution
expand the node and add all of its successors to the tree

end loop

CS 2710 Foundations of AI

M. Hauskrecht

General search algorithm

General-search (problem, strategy)
initialize the search tree with the initial state of problem
loop

if there are no candidate states to explore next return failure
choose a leaf node of the tree to expand next according to strategy
if the node satisfies the goal condition return the solution
expand the node and add all of its successors to the tree

end loop

Arad

CS 2710 Foundations of AI

M. Hauskrecht

General search algorithm

General-search (problem, strategy)
initialize the search tree with the initial state of problem
loop

if there are no candidate states to explore next return failure
choose a leaf node of the tree to expand next according to strategy
if the node satisfies the goal condition return the solution
expand the node and add all of its successors to the tree

end loop

Arad Node chosen to be expanded next

CS 2710 Foundations of AI

M. Hauskrecht

General search algorithm

General-search (problem, strategy)
initialize the search tree with the initial state of problem
loop

if there are no candidate states to explore next return failure
choose a leaf node of the tree to expand next according to strategy
if the node satisfies the goal condition return the solution
expand the node and add all of its successors to the tree

end loop

Arad Check if the node satisfied the goal

CS 2710 Foundations of AI

M. Hauskrecht

General search algorithm

General-search (problem, strategy)
initialize the search tree with the initial state of problem
loop

if there are no candidate states to explore next return failure
choose a leaf node of the tree to expand next according to strategy
if the node satisfies the goal condition return the solution
expand the node and add all of its successors to the tree

end loop

Arad

Zerind Sibiu Timisoara

Expanded node

Generated (or active, or open) nodes

CS 2710 Foundations of AI

M. Hauskrecht

General search algorithm

General-search (problem, strategy)
initialize the search tree with the initial state of problem
loop

if there are no candidate states to explore next return failure
choose a leaf node of the tree to expand next according to strategy
if the node satisfies the goal condition return the solution
expand the node and add all of its successors to the tree

end loop

Arad

Zerind Sibiu Timisoara

Newly selected node

CS 2710 Foundations of AI

M. Hauskrecht

General search algorithm

General-search (problem, strategy)
initialize the search tree with the initial state of problem
loop

if there are no candidate states to explore next return failure
choose a leaf node of the tree to expand next according to strategy
if the node satisfies the goal condition return the solution
expand the node and add all of its successors to the tree

end loop

Arad

Zerind Sibiu Timisoara

Check if it is the goal

CS 2710 Foundations of AI

M. Hauskrecht

General search algorithm

General-search (problem, strategy)
initialize the search tree with the initial state of problem
loop

if there are no candidate states to explore next return failure
choose a leaf node of the tree to expand next according to strategy
if the node satisfies the goal condition return the solution
expand the node and add all of its successors to the tree

end loop

Arad

Zerind Sibiu Timisoara

OradeaArad

Expanded nodes

Generated (active, open, fringe) nodes

CS 2710 Foundations of AI

M. Hauskrecht

General search algorithm

General-search (problem, strategy)
initialize the search tree with the initial state of problem
loop

if there are no candidate states to explore next return failure
choose a leaf node of the tree to expand next according to strategy
if the node satisfies the goal condition return the solution
expand the node and add all of its successors to the tree

end loop

Arad

Zerind Sibiu Timisoara

Oradea Fagaras Rimnicu
Vilcea

Arad OradeaArad

CS 2710 Foundations of AI

M. Hauskrecht

General search algorithm

General-search (problem, strategy)
initialize the search tree with the initial state of problem
loop

if there are no candidate states to explore next return failure
choose a leaf node of the tree to expand next according to strategy
if the node satisfies the goal condition return the solution
expand the node and add all of its successors to the tree

end loop

Arad

Zerind Sibiu Timisoara

Oradea Fagaras Rimnicu
Vilcea

Arad OradeaArad Arad Lugoj

CS 2710 Foundations of AI

M. Hauskrecht

General search algorithm

• Search methods differ in how they explore the space, that
is how they choose the node to expand next !!!!!

General-search (problem, strategy)
initialize the search tree with the initial state of problem
loop

if there are no candidate states to explore next return failure
choose a leaf node of the tree to expand next according to a strategy
if the node satisfies the goal condition return the solution
expand the node and add all of its successors to the tree

end loop

CS 2710 Foundations of AI

M. Hauskrecht

Implementation of search
• Search methods can be implemented using the queue structure

and a queuing function f

• Candidates (search tree nodes) are added to the queue
structure

• Queuing function f determines what node will be selected
next

General search (problem, Queuing-fn)
nodes Make-queue(Make-node(Initial-state(problem)))
loop

if nodes is empty then return failure
node Remove-node(nodes)
if Goal-test(problem) applied to State(node) is satisfied then return node
nodes Queuing-fn(nodes, Expand(node, Operators(node)))

end loop

¬

¬

¬

CS 2710 Foundations of AI

M. Hauskrecht

Implementation of search

• A search tree node is a data-structure that is a part of the
search tree

• Expand function – applies Operators to the state represented
by the search tree node. Together with queuing-function f it
fills the attributes.

ST
Node

State

state

children

parent

Attributes:
- state value f (cost)
- depth
- path cost

CS 2710 Foundations of AI

M. Hauskrecht

Uninformed search methods

• Search techniques that rely only on the information available
in the problem definition

– Breadth first search

– Depth first search

– Iterative deepening

– Bi-directional search

For the minimum cost path problem:

– Uniform cost search

CS 2710 Foundations of AI

M. Hauskrecht

Search methods
Properties of search methods :
• Completeness.

– Does the method find the solution if it exists?

• Optimality.
– Is the solution returned by the algorithm optimal? Does it

give a minimum length path?

• Space and time complexity.
– How much time it takes to find the solution?
– How much memory is needed to do this?

CS 2710 Foundations of AI

M. Hauskrecht

Parameters to measure complexities.
• Space and time complexity.

– Complexity is measured in terms of the following tree
parameters:

• b – maximum branching factor
• d – depth of the optimal solution
• m – maximum depth (size of the state space)

Branching factor
The number of
applicable operators

CS 2710 Foundations of AI

M. Hauskrecht

Breadth first search (BFS)

• The shallowest node is expanded first

CS 2710 Foundations of AI

M. Hauskrecht

Breadth-first search
• Expand the shallowest node first
• Implementation: put successors to the end of the queue (FIFO)

Arad
Aradqueue

Zerind Sibiu Timisoara

Oradea Fagaras Rimnicu
Vilcea

Arad OradeaArad Arad Lugoj

CS 2710 Foundations of AI

M. Hauskrecht

Breadth-first search

Arad

Zerind Sibiu Timisoara

Zerind
Sibiu
Timisoara

queue

Oradea Fagaras Rimnicu
Vilcea

Arad OradeaArad Arad Lugoj

CS 2710 Foundations of AI

M. Hauskrecht

Breadth-first search

Arad

Zerind Sibiu Timisoara

OradeaArad

Sibiu
Timisoara
Arad
Oradea

queue

Fagaras Rimnicu
Vilcea

OradeaArad Arad Lugoj

CS 2710 Foundations of AI

M. Hauskrecht

Breadth-first search

Arad

Zerind Sibiu Timisoara

Oradea Fagaras Rimnicu
Vilcea

Arad OradeaArad

Timisoara
Arad
Oradea
Arad
Oradea
Fagaras
Romnicu Vilcea

queue

Arad Lugoj

CS 2710 Foundations of AI

M. Hauskrecht

Breadth-first search

Arad

Zerind Sibiu Timisoara

Oradea Fagaras Rimnicu
Vilcea

Arad OradeaArad Arad Lugoj

Arad
Oradea
Arad
Oradea
Fagaras
Romnicu Vilcea
Arad
Lugoj

queue

CS 2710 Foundations of AI

M. Hauskrecht

Properties of breadth-first search

• Completeness: Does the method find the solution if it exists?

• Optimality: Is the solution returned by the algorithm optimal?
Does it give a minimum length path?

• Time complexity: ?
• Memory (space) complexity: ?

– For complexity use:
• b – maximum branching factor
• d – depth of the optimal solution
• m – maximum depth of the search tree

CS 2710 Foundations of AI

M. Hauskrecht

Properties of breadth-first search

• Completeness: Yes.

• Optimality: ?

• Time complexity: ?

• Memory (space) complexity: ?

CS 2710 Foundations of AI

M. Hauskrecht

Properties of breadth-first search

• Completeness: Yes. The solution is reached if it exists.

• Optimality: Yes, for the shortest path.

• Time complexity: ?

• Memory (space) complexity: ?

CS 2710 Foundations of AI

M. Hauskrecht

BFS – time complexity

b

d

depth number of nodes

0 1

1 21=2

2

3

d

22=4

23=8

2d (bd)

Total nodes: ?

d+1 2d+1 (bd+1)

CS 2710 Foundations of AI

M. Hauskrecht

BFS – time complexity

b

d

depth number of nodes

0 1

1 21=2

2

3

d

22=4

23=8

2d (bd)

Total nodes:)(1+dbO

d+1 2d+1 (bd+1)

Expanded nodes:)(dbO
CS 2710 Foundations of AI

M. Hauskrecht

Properties of breadth-first search

• Completeness: Yes. The solution is reached if it exists.

• Optimality: Yes, for the shortest path.

• Time complexity:

exponential in the depth of the solution d

• Memory (space) complexity: ?

)(1 2 dd bObbb =++++ !

CS 2710 Foundations of AI

M. Hauskrecht

BFS – memory complexity

b

d

depth number of nodes

0 1

1 21=2

2

3

d

22=4

23=8

2d (bd)

Total nodes: ?

d+1 2d+1 (bd+1)

• Count nodes kept in the tree structure
or in the queue

CS 2710 Foundations of AI

M. Hauskrecht

BFS – memory complexity

b

d

depth number of nodes

0 1

1 21=2

2

3

d

22=4

23=8

2d (bd)

Total nodes:)(1+dbO

d+1 2d+1 (bd+1)

Expanded nodes:)(dbO

• Count nodes kept in the tree structure
or in the queue

CS 2710 Foundations of AI

M. Hauskrecht

Properties of breadth-first search

• Completeness: Yes. The solution is reached if it exists.

• Optimality: Yes, for the shortest path.

• Time complexity:

exponential in the depth of the solution d

• Memory (space) complexity:

nodes are kept in the memory

)(1 2 dd bObbb =++++ !

)(dbO

CS 2710 Foundations of AI

M. Hauskrecht

Depth-first search (DFS)

• The deepest node is expanded first
• Backtrack when the path cannot be further expanded

CS 2710 Foundations of AI

M. Hauskrecht

Depth-first search
• The deepest node is expanded first
• Implementation: put successors to the beginning of the queue

Arad Aradqueue

Zerind Sibiu Timisoara

Oradea Fagaras Rimnicu
Vilcea

Arad OradeaArad Arad Lugoj

CS 2710 Foundations of AI

M. Hauskrecht

Depth-first search

Arad

Zerind Sibiu Timisoara

Zerind
Sibiu
Timisoara

queue

Oradea Fagaras Rimnicu
Vilcea

Arad OradeaArad Arad Lugoj

CS 2710 Foundations of AI

M. Hauskrecht

Depth-first search

Arad

Zerind Sibiu Timisoara

Oradea

Arad
Oradea
Sibiu
Timisoara

queue

Fagaras Rimnicu
Vilcea

Arad OradeaArad Arad Lugoj

CS 2710 Foundations of AI

M. Hauskrecht

Depth-first search

Arad

Zerind Sibiu Timisoara

Sibiu TimisoaraZerind

Note: Arad – Zerind – Arad cycle

Zerind
Sibiu
Timisoara
Oradea
Sibiu
Timisoara

queue

Oradea Fagaras Rimnicu
Vilcea

Arad OradeaArad Arad Lugoj

CS 2710 Foundations of AI

M. Hauskrecht

Properties of depth-first search

• Completeness: Does it always find the solution if it exists?

• Optimality: ?

• Time complexity: ?

• Memory (space) complexity: ?

CS 2710 Foundations of AI

M. Hauskrecht

Properties of depth-first search

• Completeness: No. If infinite loops can occur.
– Solution 1: set the maximum depth limit m
– Solution 2: prevent occurrence of cycles

• Optimality: does it find the minimum length path ?

• Time complexity: ?

• Memory (space) complexity: ?

CS 2710 Foundations of AI

M. Hauskrecht

Properties of depth-first search

• Completeness: No, if we permit infinite loops. .
– Solution 1: set the maximum depth limit m
– Solution 2: prevent occurrence of cycles

• Optimality: does it find the minimum length path ?

• Time complexity: ?

• Memory (space) complexity: ?

CS 2710 Foundations of AI

M. Hauskrecht

Properties of depth-first search

• Completeness: No. If we permit infinite loops.
– Solution 1: set the maximum depth limit m
– Solution 2: prevent occurrence of cycles

• Optimality: No. Solution found first may not be the shortest
possible.

• Time complexity: ?

• Memory (space) complexity: ?

CS 2710 Foundations of AI

M. Hauskrecht

Properties of depth-first search

• Completeness: No. If we permit infinite loops.
– Solution 1: set the maximum depth limit m
– Solution 2: prevent occurrence of cycles

• Optimality: No. Solution found first may not be the shortest
possible.

• Time complexity: assume a finite maximum tree depth m

• Memory (space) complexity: ?

CS 2710 Foundations of AI

M. Hauskrecht

DFS – time complexity

b

m

depth number of nodes

0 1

1 21=2

2

3

m

22=4

23=8

2m-2m-d

Complexity:

d

d 2d

CS 2710 Foundations of AI

M. Hauskrecht

DFS – time complexity

b

m

depth number of nodes

0 1

1 21=2

2

3

m

22=4

23=8

2m-2m-d

Complexity:)(mbO

d

d 2d

CS 2710 Foundations of AI

M. Hauskrecht

Properties of depth-first search

• Completeness: No. If we permit infinite loops.
– Solution 1: set the maximum depth limit m
– Solution 2: prevent occurrence of cycles

• Optimality: No. Solution found first may not be the shortest
possible.

• Time complexity:

exponential in the maximum depth of the search tree m

• Memory (space) complexity: ?

)(mbO

CS 2710 Foundations of AI

M. Hauskrecht

DFS – memory complexity

b

depth number of nodes kept

0 1

CS 2710 Foundations of AI

M. Hauskrecht

DFS – memory complexity

b

depth number of nodes kept

0 0

1 2 = b

CS 2710 Foundations of AI

M. Hauskrecht

DFS – memory complexity

b

depth number of nodes kept

0 0

1 1 = (b-1)

2 2 = b

CS 2710 Foundations of AI

M. Hauskrecht

DFS – memory complexity

b

m

depth number of nodes kept

0 0

1 1

2

3

m

1

1

2=b

Complexity:

CS 2710 Foundations of AI

M. Hauskrecht

DFS – memory complexity

b

m

depth number of nodes kept

0 0

1 1=(b-1)

2

3

m

1= (b-1)

1 =(b-1)

2=b

Complexity:)(bmO

CS 2710 Foundations of AI

M. Hauskrecht

DFS – memory complexity

b

m

depth number of nodes

0 1

1 2 = b

2

3

m

2

2

2

Total nodes:)(bmO

Count nodes kept in the tree structure or the queue

CS 2710 Foundations of AI

M. Hauskrecht

Properties of depth-first search

• Completeness: No. If we permit infinite loops.
– Solution 1: set the maximum depth limit m
– Solution 2: prevent occurrence of cycles

• Optimality: No. Solution found first may not be the shortest
possible.

• Time complexity:

exponential in the maximum depth of the search tree m
• Memory (space) complexity: ?

linear in the maximum depth of the search tree m

)(mbO

)(bmO

CS 2710 Foundations of AI

M. Hauskrecht

Setting the maximum depth of the depth-
first search

• Setting the maximum depth of the search tree avoids pitfalls of
the depth first search

• Problem: How to pick the maximum depth?

• Assume: we have a traveler problem with 20 cities
• How to pick the maximum tree depth?

CS 2710 Foundations of AI

M. Hauskrecht

Setting the maximum depth of the depth-
first search

• Setting the maximum depth of the search tree avoids pitfalls of
depth first search

• Problem: How to pick the maximum depth?

• Assume: we have a traveler problem with 20 cities
– How to pick the maximum tree depth?
– We need to consider only paths of length < 20

• Limited depth DFS
• Time complexity:
• Memory complexity:

)(mbO
)(bmO

CS 2710 Foundations of AI

M. Hauskrecht

Elimination of state repeats
While searching the state space for the solution we can encounter

the same state many times. Recall more tree nodes can point to
the same state (e.g. city).

Question: Is it necessary to keep and expand all copies of states
in the search tree?

Two possible cases:
(A) Cyclic state repeats
(B) Non-cyclic state repeats

A

A

B

B

Search tree

CS 2710 Foundations of AI

M. Hauskrecht

Elimination of cycles

Case A: Corresponds to the path with a cycle
Question: Can the branch (path) in which the same state is visited

twice ever be a part of the optimal (shortest) path between the
initial state and the goal?

???

A

A

CS 2710 Foundations of AI

M. Hauskrecht

Elimination of cycles

Case A: Corresponds to the path with a cycle
Question: Can the branch (path) in which the same state is visited

twice ever be a part of the optimal (shortest) path between the
initial state and the goal? No !!

Branches representing cycles cannot be the part of the shortest
solution and can be eliminated.

A

A

CS 2710 Foundations of AI

M. Hauskrecht

Elimination of cycles

How to check for cyclic state repeats:
Do not expand the node with the state that is the same as the state

in one of its ancestors.
• Check ancestors in the tree structure
• Caveat: we need to keep the tree traverse it up.

A

A

CS 2710 Foundations of AI

M. Hauskrecht

Elimination of non-cyclic state repeats

Case B: nodes with the same state are not on the same path from
the initial state

Question: Is one of the two nodes: nodeB-1, or nodeB-2 better
and preferable?

B

B

Root of the search tree

nodeB-1

nodeB-2

CS 2710 Foundations of AI

M. Hauskrecht

Elimination of non-cyclic state repeats

Case B: nodes with the same state are not on the same path from the
initial state

Question: Is one of the two nodes: nodeB-1, or nodeB-2 better and
preferable?

Yes. nodeB-1 represents a shorter path from the initial state to B

B

B

Root of the search tree

nodeB-1

nodeB-2

CS 2710 Foundations of AI

M. Hauskrecht

Elimination of non-cyclic state repeats

Conclusion: Since we are happy with the optimal solution
nodeB-2 can be safely eliminated. It does not affect the
optimality of the solution.

Problem: Nodes can be encountered in different order during
different search strategies.

B

B

Root of the search tree

nodeB-1

nodeB-2

CS 2710 Foundations of AI

M. Hauskrecht

Elimination of non-cyclic state repeats with
BFS

Breadth FS is well behaved with regard to non-cyclic state
repeats: nodeB-1 is always expanded before nodeB-2

• Order of expansion determines the correct elimination strategy
• we can safely eliminate the node that is associated with the state

that has been expanded before

B

B

Root of the search tree

nodeB-1

nodeB-2

CS 2710 Foundations of AI

M. Hauskrecht

Elimination of state repeats for the BFS

For the breadth-first search (BFS)
• we can safely eliminate all second, third, fourth, etc.

occurrences of the same state
• this rule covers both cyclic and non-cyclic repeats !!!

Implementation of all state repeat elimination through marking:
• All expanded states are marked
• All marked states are stored in a hash table
• Checking if the node has ever been expanded corresponds to the

mark structure lookup
Use hash table to implement marking

CS 2710 Foundations of AI

M. Hauskrecht

Elimination of non-cyclic state repeats with
DFS

Depth FS: nodeB-2 can be expanded before nodeB-1
• The order of node expansion does not imply correct elimination

strategy
• we need to remember the length of the path between nodes to

safely eliminate them

B

B

Root of the search tree

nodeB-1

nodeB-2

CS 2710 Foundations of AI

M. Hauskrecht

Elimination of all state redundancies

• General strategy: A node is redundant if there is another
node with exactly the same state and a shorter path from the
initial state
– Works for any search method
– Uses additional path length information

Implementation: hash table with the minimum path value:
• The new node is redundant and can be eliminated if

– it is in the hash table (it is marked), and
– its path is longer or equal to the value stored.

• Otherwise the new node cannot be eliminated and it is entered
together with its value into the hash table. (if the state was in
the hash table the new path value is better and needs to be
overwritten.)

CS 2710 Foundations of AI

