
M. HauskrechtCS 2710 Foundations of AI

CS 2710 Foundations of AI
Lecture 2

Milos Hauskrecht
milos@pitt.edu
5329 Sennott Square

Problem solving by searching

M. Hauskrecht

Example

• Assume a problem of solving a linear equation

Do you consider it a challenging problem?

3x + 2 =11

CS 2710 Foundations of AI

M. Hauskrecht

Example

• Assume a problem of computing the roots of the quadratic
equation

Do you consider it a challenging problem?
Hardly, we just apply the ‘standard’ formula to solve:

3x + 2 =11

ax + b = c
x = (c− b) / a
x = 3

CS 2710 Foundations of AI

M. Hauskrecht

Solving problems by searching

• Some problems have a straightforward solution
– Just apply a known formula, or implement and follow a

standardized procedure
– Hardly a sign of intelligence

Example: solution of linear or quadratic equations

• More interesting problems do not have a straightforward
solution, and they require search:
– more than one possible alternative needs to be explored

before the problem is solved
– the number of alternatives to search among can be very

large, even infinite

CS 2710 Foundations of AI

M. Hauskrecht

Search example: Path finding
• Find a path from one city to another city

CS 2710 Foundations of AI

M. Hauskrecht

Search example: Path finding
• Find a path from one city to another city

CS 2710 Foundations of AI

M. Hauskrecht

Example. Traveler problem
• Another flavor of the traveler problem:

– find the minimum length path between S and T

CS 2710 Foundations of AI

M. Hauskrecht

Example. Puzzle 8.

• Find a sequence of moves of tiles from the initial game
position to the designated goal position

Initial position Goal position

CS 2710 Foundations of AI

M. Hauskrecht

Example. N-queens problem.
Find a configuration of n queens on an n x n board such that

queens do not attack each other

A goal configuration

A bad configuration

CS 2710 Foundations of AI

M. Hauskrecht

A search problem
is defined by:
• A search space:

– A set of objects among which we search for the solution
– Examples: paths connecting two cities, or the different N-

queen configurations
• A goal condition

– What are the characteristics of the object we want to find in
the search space?

– Examples:
• Path between cities A and B
• Path between A and B with the smallest number of links
• Path between A and B with the shortest distance
• Non-attacking n-queen configuration

CS 2710 Foundations of AI

M. Hauskrecht

Search

• Search (process)
– The process of exploration of the search space

• The efficiency of the search depends on:
– The search space and its size
– Method used to explore (traverse) the search space
– Condition to test the satisfaction of the search objective

(what it takes to determine I found the desired goal object

CS 2710 Foundations of AI

M. Hauskrecht

Search

• Search (process)
– The process of exploration of the search space

• The efficiency of the search depends on:
– The search space and its size
– Method used to explore (traverse) the search space
– Condition to test the satisfaction of the search objective

(what it takes to determine I found the desired goal object

CS 2710 Foundations of AI

M. Hauskrecht

Search

• Search (process)
– The process of exploration of the search space

• The efficiency of the search depends on:
– The search space and its size
– Method used to explore (traverse) the search space
– Condition to test the satisfaction of the search objective

(what it takes to determine I found the desired goal object

?

CS 2710 Foundations of AI

M. Hauskrecht

Search

• Search (process)
– The process of exploration of the search space

• Important
– We can often influence the efficiency of the search !!!!
– We can be smart about choosing the search space, the

exploration policy, and the design of the goal test

CS 2710 Foundations of AI

M. Hauskrecht

Graph representation of a search problem
• Search problems can be often represented using graphs
• Example: Finding a path on a map

– Map corresponds to the graph, nodes to cities, links to
valid moves via available connections

– Goal: find a path (sequence of moves) in the graph from
the start to the target city

start

target

S

T

A

B
C

D

E
F

G H

I

J

K

L

CS 2710 Foundations of AI

M. Hauskrecht

Graph search problem
• A graph search problem is defined by :

– A state space (all game positions, or all cities in the map)
– Operators (= valid moves, actions transforming the states)
– A start state and a goal state

• State space graph: a graph where states = nodes, operators =
links

• A solution of the path finding problem is a sequence of
operators that transforms the start state to a goal state (this
sequence is also called a plan)

CS 2710 Foundations of AI

start

target

S

T

A

B
C

D

E F

G H

I

J

K

L

M. Hauskrecht

Puzzle 8 as a graph search problem
Puzzle 8. Find a sequence of moves from the initial

configuration to the goal configuration.
Conversion to the state space graph

– nodes corresponds to states of the game,
– links to valid moves made by the player

start
target

CS 2710 Foundations of AI

M. Hauskrecht

Graph search problem
• More complex versions of the graph search problem:

– Find the minimal length path
(= a path with the smallest number of connections, or the
shortest sequence of moves that solves Puzzle 8)

start

target

S

T

A

B
C

D

E
F

G H

I

J

K

L

CS 2710 Foundations of AI

M. Hauskrecht

Graph search problem
• More complex versions of the graph search problems:

– Find the minimum cost path
(= a path with the shortest distance)

start

target

S

T

A

B
C

D

E
F

G H

I

J

K

L

2

3

2

2

3

32
2

4

4

2

4

4

3

3

5

CS 2710 Foundations of AI

M. Hauskrecht

N-queens as a graph search problem
Some problems are easy to formalize as graph search problems
• But some problems are harder and less intuitive

– Take e.g. N-queens problem.

• Problem:
– We look for a configuration, not a sequence of moves
– No distinguished initial state, no operators (moves)

Goal configuration

CS 2710 Foundations of AI

M. Hauskrecht

N-queens as a graph search problem

Can we convert N-queens to a graph search problem?
• We need states, operators, initial state and goal condition.

…
Goal(s)Initial

CS 2710 Foundations of AI

States: ?
Initial state: ?
Operators (moves): ?
Goal state: ?

M. Hauskrecht

N-queens as a graph search problem
Can we convert N-queens to a graph search problem?
• We need states, operators, initial state and goal condition.

How to choose the state space for N-queens?
Assume the state space = all configurations of N queens on the board

CS 2710 Foundations of AI

States: ?
Initial state: ?
Operators (moves): ?
Goal state: ?

…
Goal(s)Initial

…

M. Hauskrecht

N-queens as a graph search problem
Can we convert N-queens to a graph search problem?
• We need states, operators, initial state and goal states.

…

States: all N-queen configurations

Initial state: ?
Operators (moves): ?
Goal state: ?

CS 2710 Foundations of AI

…

M. Hauskrecht

N-queens as a graph search problem
Can we convert N-queens to a graph search problem?
• We need states, operators, initial state and goal states.

Goal

States: all N-queen configurations

Initial state: ?
Operators (moves): ?
Goal state: ?

CS 2710 Foundations of AI

…

…

M. Hauskrecht

N-queens as a graph search problem
The state space:

Can we convert N-queens to a graph search problem?
• We need states, operators, initial state and goal state.

States: all N-queen configurations
Initial state: ?
Operators (moves): ?
Goal state: states satisfying the goal condition

CS 2710 Foundations of AI

…

Goal

…

M. Hauskrecht

N-queens as a graph search problem
The state space:

Can we convert it to a graph search problem?
• We need states, operators, initial state and goal state.

…

Goalinitial

States: all N-queen configurations
Initial state: ?
Operators (moves): ?
Goal state: states satisfying the goal condition

CS 2710 Foundations of AI

…

M. Hauskrecht

N-queens as a graph search problem
The state space:

Can we convert N-queens to a graph search problem?
• We need states, operators, initial state and goal state.

States: all N-queen configurations
Initial state: an arbitrary N-queen configuration
Operators (moves): change a position of one queen
Goal state: states satisfying the goal condition

CS 2710 Foundations of AI

…

…
Initial

Goal

M. Hauskrecht

N-queens as a graph search problem
Is there an alternative way to formulate the N-queens problem

as a search problem?
• Can we choose a different state space? Operators? Initial state?

CS 2710 Foundations of AI

M. Hauskrecht

N-queens as a graph search problem
Is there an alternative way to formulate the N-queens problem

as a search problem?
• A new graph search problem:

– States: configurations of 0,1,2,…N queens
– Operators: additions of a queen to the board
– Initial state: no queens on the board
– Goal state: states satisfying the goal condition

Initial

CS 2710 Foundations of AI

Goal

M. Hauskrecht

N-queens as a graph search problem
N-queens problems
• This is a different graph search problem when compared to

Puzzle 8 or Path planning:
We want to find only the target configuration, not a path

CS 2710 Foundations of AI

M. Hauskrecht

Two types of graph search problems

Depending on the solution we seek we can distinguish:
• Path search (planning) problems

– Solution is a path between states S and T
– Example: traveler problem, Puzzle 8
– Additional goal criterion: minimum length (cost) path

• Configuration search problems
– Solution is a state (configuration) satisfying the goal

condition.
– Example: n-queens problem
– Additional goal criterion: “soft” preferences on

configurations, e.g. minimum cost design

CS 2710 Foundations of AI

M. Hauskrecht

Graph search problem

Search problems can be converted into a graph search problems:
• Initial state

– State (configuration) we start to search from (e.g. start city,
initial game position)

• Operators:
– Transform one state to another (e.g. valid connections

between cities, valid moves in Puzzle 8)
• Goal condition:

– Defines the target state (destination, winning position)
• State space:

– defined indirectly through: the initial state + operators
• Solution: Either a sequence of operators from S to T, or a goal

(target) state

CS 2710 Foundations of AI

M. Hauskrecht

Traveler problem

Traveler problem formulation:
• States: different cities
• Initial state: city Arad
• Operators: moves to cities in the neighborhood
• Goal condition: city Bucharest
• Type of the problem: path search
• Possible solution cost: path length

CS 2710 Foundations of AI

M. Hauskrecht

Puzzle 8 example

Search problem formulation:
• States: tile configurations
• Initial state: initial configuration
• Operators: moves of the empty tile
• Goal: reach the winning configuration
• Type of the problem: path search
• Possible solution cost: a number of moves

Initial state Goal state

CS 2710 Foundations of AI

M. Hauskrecht

N-queens problem
Formulation 1:

Problem formulation:
• States: different configurations of 4 queens on the board
• Initial state: an arbitrary configuration of 4 queens
• Operators: move one queen to a different unoccupied position
• Goal: a configuration with non-attacking queens
• Type of the problem: configuration search

Valid goal configurationBad goal configuration

CS 2710 Foundations of AI

M. Hauskrecht

Real-world path-search problems

Route finding/navigation:
• States: roads, exits, intersections
• Initial state: current address
• Operators: moves to roads, exits, intersections
• Goal condition: target address
• Type of the problem: path search
• Possible solution cost: time, distance, tolls

CS 2710 Foundations of AI

M. Hauskrecht

Real-world configuration-search problems

Classroom scheduling:
• States: assignment of times, rooms, classes, teachers
• Initial state: arbitrary and possibly conflicting assignment
• Operators: changes of assignments
• Goal condition: non-conflicting schedule assignment
• Type of the problem: configurations search
• Possible solution cost: minimize class and teachers’ gaps,

CS 2710 Foundations of AI

M. Hauskrecht

Real-world configuration-search problems

VLSI design:
• States: circuit layout and connections
• Initial state: initial layout
• Operators: changes of layout of elements, connections
• Goal condition: configuration satisfying the design constraints
• Type of the problem: configuration search
• Possible solution cost: minimize connection distances, stray

capacities, energy consumption
CS 2710 Foundations of AI

M. Hauskrecht

Search

• Search (process)
– The process of exploration of the search space

• The efficiency of the search depends on:
– The search space and its size
– Method used to explore (traverse) the search space
– Condition to test the satisfaction of the search objective

(what it takes to determine I found the desired goal object

CS 2710 Foundations of AI

M. Hauskrecht

N-queens problem: formulation 1
Formulation 1:

Problem formulation:
• States: different configurations of 4 queens on the board
• Initial state: an arbitrary configuration of 4 queens
• Operators: move one queen to a different unoccupied position
• Goal: a configuration with non-attacking queens
• Type of the problem: configuration search

Valid goal configurationBad goal configuration

CS 2710 Foundations of AI

M. Hauskrecht

N-queens problem: formulation 2
Formulation 2:

Problem formulation:
• States: configurations of 0 to 4 queens on the board
• Initial state: no-queen configuration
• Operators: add a queen to the leftmost unoccupied column
• Goal: a configuration with 4 non-attacking queens
• Type of the problem: configuration search

Initial configuration

CS 2710 Foundations of AI

M. Hauskrecht

Comparison of two problem formulations

Operators: switch one of the queens

Operators: add a queen to the leftmost unoccupied column
5432 444441 <++++

Solution 2:

Solution 1:

÷÷
ø

ö
çç
è

æ
4
16State space size:

CS 2710 Foundations of AI

State space size:

M. Hauskrecht

Even better solution to the N-queens

Operators: add a queen to the leftmost unoccupied column

Solution 2:

Improved solution with a smaller search space
Operators: add a queen to the leftmost unoccupied column

such that it does not attack already placed queens

54<

651*2*3*42*3*43*441 =++++£

CS 2710 Foundations of AI

State space size:

State space size:

M. Hauskrecht

Search

• Search (process)
– The process of exploration of the search space

• The efficiency of the search depends on:
– The search space and its size
– Method used to explore (traverse) the search space
– Condition to test the satisfaction of the search objective

(what it takes to determine I found the desired goal object

Think twice before solving the problem:
Choose the search space wisely

CS 2710 Foundations of AI

M. Hauskrecht

Search

• Search (process)
– The process of exploration of the search space

• The efficiency of the search depends on:
– The search space and its size
– Method used to explore (traverse) the search space
– Condition to test the satisfaction of the search objective

(what it takes to determine I found the desired goal object

CS 2710 Foundations of AI

M. Hauskrecht

Search

• Search (process)
– The process of exploration of the search space

• The efficiency of the search depends on:
– We can often influence the efficiency of the search !!!!
– We can be smart about choosing the search space, the

exploration policy, and the design of the goal test

CS 2710 Foundations of AI

M. Hauskrecht

Search process
Exploration of the state space through successive application of
operators from the initial state
• Search tree = structure representing the exploration trace

– Is built on-line during the search process
– Branches correspond to explored paths, and leaf nodes to

the exploration fringe

Arad

Zerind Sibiu Timisoara

Oradea Fagaras Rimnicu
Vilcea

Arad OradeaArad

CS 2710 Foundations of AI

M. Hauskrecht

Search tree
• A search tree = (search) exploration trace

– different from the graph representation of the problem
– states can repeat in the search tree

State space
graph

Search tree
built by exploring paths
starting from city Arad

Arad

Zerind Sibiu Timisoara

Oradea Fagaras Rimnicu
Vilcea

Arad OradeaArad

CS 2710 Foundations of AI

M. Hauskrecht

Search tree

Arad

Zerind Sibiu Timisoa
ra

Oradea Fagaras Rimnicu
Vilcea

Arad OradeaArad Arad Lugoj

A branch in the search tree
= a path in the graph

CS 2710 Foundations of AI

State space
graph

Search tree

M. Hauskrecht

Search tree

Arad

Zerind Sibiu Timisoa
ra

Oradea Fagaras Rimnicu
Vilcea

Arad OradeaArad Arad Lugoj

A branch in the search tree
= a path in the graph

CS 2710 Foundations of AI

State space
graph

Search tree

M. Hauskrecht

General search algorithm

General-search (problem, strategy)
initialize the search tree with the initial state of problem
loop

if there are no candidate states to explore return failure
choose a leaf node of the tree to expand next according to strategy
if the node satisfies the goal condition return the solution
expand the node and add all of its successors to the tree

end loop

CS 2710 Foundations of AI

M. Hauskrecht

General search algorithm

General-search (problem, strategy)
initialize the search tree with the initial state of problem
loop

if there are no candidate states to explore next return failure
choose a leaf node of the tree to expand next according to strategy
if the node satisfies the goal condition return the solution
expand the node and add all of its successors to the tree

end loop

Arad

CS 2710 Foundations of AI

M. Hauskrecht

General search algorithm

General-search (problem, strategy)
initialize the search tree with the initial state of problem
loop

if there are no candidate states to explore next return failure
choose a leaf node of the tree to expand next according to strategy
if the node satisfies the goal condition return the solution
expand the node and add all of its successors to the tree

end loop

Arad Node chosen to be expanded next

CS 2710 Foundations of AI

M. Hauskrecht

General search algorithm

General-search (problem, strategy)
initialize the search tree with the initial state of problem
loop

if there are no candidate states to explore next return failure
choose a leaf node of the tree to expand next according to strategy
if the node satisfies the goal condition return the solution
expand the node and add all of its successors to the tree

end loop

Arad Check if the node satisfied the goal

CS 2710 Foundations of AI

M. Hauskrecht

General search algorithm

General-search (problem, strategy)
initialize the search tree with the initial state of problem
loop

if there are no candidate states to explore next return failure
choose a leaf node of the tree to expand next according to strategy
if the node satisfies the goal condition return the solution
expand the node and add all of its successors to the tree

end loop

Arad

Zerind Sibiu Timisoara

Expanded node

Generated (or active, or open) nodes

CS 2710 Foundations of AI

M. Hauskrecht

General search algorithm

General-search (problem, strategy)
initialize the search tree with the initial state of problem
loop

if there are no candidate states to explore next return failure
choose a leaf node of the tree to expand next according to strategy
if the node satisfies the goal condition return the solution
expand the node and add all of its successors to the tree

end loop

Arad

Zerind Sibiu Timisoara

Newly selected node

CS 2710 Foundations of AI

M. Hauskrecht

General search algorithm

General-search (problem, strategy)
initialize the search tree with the initial state of problem
loop

if there are no candidate states to explore next return failure
choose a leaf node of the tree to expand next according to strategy
if the node satisfies the goal condition return the solution
expand the node and add all of its successors to the tree

end loop

Arad

Zerind Sibiu Timisoara

Check if it is the goal

CS 2710 Foundations of AI

M. Hauskrecht

General search algorithm

General-search (problem, strategy)
initialize the search tree with the initial state of problem
loop

if there are no candidate states to explore next return failure
choose a leaf node of the tree to expand next according to strategy
if the node satisfies the goal condition return the solution
expand the node and add all of its successors to the tree

end loop

Arad

Zerind Sibiu Timisoara

OradeaArad

Expanded nodes

Generated (active, open) nodes

CS 2710 Foundations of AI

M. Hauskrecht

General search algorithm

General-search (problem, strategy)
initialize the search tree with the initial state of problem
loop

if there are no candidate states to explore next return failure
choose a leaf node of the tree to expand next according to strategy
if the node satisfies the goal condition return the solution
expand the node and add all of its successors to the tree

end loop

Arad

Zerind Sibiu Timisoara

Oradea Fagaras Rimnicu
Vilcea

Arad OradeaArad

CS 2710 Foundations of AI

M. Hauskrecht

General search algorithm

General-search (problem, strategy)
initialize the search tree with the initial state of problem
loop

if there are no candidate states to explore next return failure
choose a leaf node of the tree to expand next according to strategy
if the node satisfies the goal condition return the solution
expand the node and add all of its successors to the tree

end loop

Arad

Zerind Sibiu Timisoara

Oradea Fagaras Rimnicu
Vilcea

Arad OradeaArad Arad Lugoj

CS 2710 Foundations of AI

M. Hauskrecht

General search algorithm

• Search methods differ in how they explore the space, that
is how they choose the node to expand next !!!!!

General-search (problem, strategy)
initialize the search tree with the initial state of problem
loop

if there are no candidate states to explore next return failure
choose a leaf node of the tree to expand next according to a strategy
if the node satisfies the goal condition return the solution
expand the node and add all of its successors to the tree

end loop

CS 2710 Foundations of AI

M. Hauskrecht

Implementation of search
• Search methods can be implemented using the queue structure

and a queuing function f

• Candidates (search tree nodes) are added to the queue
structure

• Queuing function f determines what node will be selected
next

General search (problem, Queuing-fn)
nodes Make-queue(Make-node(Initial-state(problem)))
loop

if nodes is empty then return failure
node Remove-node(nodes)
if Goal-test(problem) applied to State(node) is satisfied then return node
nodes Queuing-fn(nodes, Expand(node, Operators(node)))

end loop

¬

¬

¬

CS 2710 Foundations of AI

M. Hauskrecht

Implementation of search

• A search tree node is a data-structure that is a part of the
search tree

• Expand function – applies Operators to the state represented
by the search tree node. Together with queuing-function f it
fills the attributes.

ST
Node

State

state

children

parent

Attributes:
- state value f (cost)
- depth
- path cost

CS 2710 Foundations of AI

M. Hauskrecht

Search

• Search (process)
– The process of exploration of the search space

• The efficiency of the search depends on:
– The search space and its size
– Method used to explore (traverse) the search space
– Condition to test the satisfaction of the search objective

(what it takes to determine I found the desired goal object

CS 2710 Foundations of AI

