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Milos’ research interests

Artificial Intelligence

* Planning, reasoning and optimization in the presence of
uncertainty

* Machine learning
» Applications:
— medicine
— Finance and investments

M ain research focus:

* Models of high dimensional stochastic problems and their
efficient solutions
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KB for medical diagnosis.

We want to build a KB system for the diagnosis of pneumonia.
Problem description:
» Disease: pneumonia
» Patient symptoms (findings, lab tests):
— Fever, Cough, Paleness, WBC (white blood cells) count,
Chest pain, etc.
Representation of a patient case:
» Statements that hold (are true) for that patient.
E.o: Fever Jrue
Cough False
WBCcountHigh

Diagnostic task: we want to infer whether the patient suffers
from the pneumonia or not given the symptoms
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Uncertainty

To make diagnostic inference possible we need to represent
rules or axiomsthat relate symptoms and diagnosis

Problem: disease/symptoms relation is not deterministic (things
may vary from patient to patient) — itusicertain
* Disease — Symptomsuncertainty
— A patient suffering from pneumonia may not have fever all
the times, may or may not have a cough, white blood cell
test can be in a normal range.
* Symptoms — Disease uncertainty
— High fever is typical for many diseases (e.g. bacterial
diseases) and does not point specifically to pneumonia

— Fever, cough, paleness, high WBC count combined do no
always point to pneumonia
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M odeling the uncertainty.

» How to describe, represent the relations in the presence of
uncertainty?

* How to manipulate such knowledge to make inferences?
— Humans can reason with uncertainty.

?
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Methods for representing uncertainty

KB systems based on propositional and first-order logic often
represent uncertain statements, axioms of the domain in termg

 rules with variougertainty factors
Very popular in 70-80s (MYCIN)

If 1. The stain of the organism is gram-positive, and

2. The morphology of the organism is coccus, and

3. The growth conformation of the organismis chains
Then with certainty 0.7

the identity of the organism is streptococcus

Problems:

» Chaining of multiple inference rules (propagation of uncertainty
« Combinations of rules with the same conclusions

« After some number of combinations results not intuitive.
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Representing certainty factors

» Facts (propositional statements about the world) are assigned
some certainty number reflecting the belief in that the
statement is satisfied:

CF (Pneumonia=True) =0.7
* Rulesincorporate tests on the certainty values
(A in[051)0(B in[0.7]]) - C with CF=0.8
* Methodsfor combination of conclusions
(A in[051)0(B in[0.7]]) - C with CF=0.8
(E in[0.81])O(D in[0.9]]) - C with CF=0.9
CF(C) =max[0.9;0.8] =0.9
CF(C)=0.9*0.8=0.72
CF(C)=0.9+0.8-0.9*0.8=0.98

?
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Probability theory

awell-defined coherent theory for representing uncertainty and
for reasoning with it

Representation:

Proposition statements — assignment of values to random
variables

Pneumonia=True  WBCcount = high

Probabilities over statements model the degree of belief in these
statements

P(Pneumonia=True) = 0.001

P(WBCcount = high) =0.005

P(Pneumonia=Trueg Fever =True =0.0009

P(Pneumonia= False WBCcount = normal, Cough = False) =0.97
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Joint probability distribution

Joint probability distribution (for a set variables)

» Defines probabilities for all possible assignments to values of
variables in the set

P(pneumonia,WBCcount) 2x3table

WBCcount
high normal  low

P(Pneumonia)

Pneumonia | Trué | 0.0008 0.0001 0.0001 |/ 0.001
False | 0.0042 0.9929 0.0019 0.999
0.005 0993  0.002 ‘
P(WBCcount)

Marginalization (summing of rows, or columns)
- summing out variables
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Conditional probability distribution

Conditional probability distribution:
* Probability distribution of A given (fixed B)
P(A B)
P(B)
» Conditional probability is defined in terms of joint
probabilities

» Joint probabilities can be expressed in terms of conditional
probabilities

P(A,B) =P(A|B)P(B)
» Conditional probability — is useful faliagnostic reasoning
— the effect of a symptoms (findings) on the disease
P(Pneumonia= True| Fever = TrueWBCcount= high Cough=True

P(A|B) =
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M odeling uncertainty with probabilities

* Full joint distribution: joint distribution over all random
variables defining the domain

— itis sufficient to represent the complete domain and to do
any type of probabilistic reasoning

Problems:

— Space complexity. To store full joint distribution requires
to rememberO(d") numbers.

n — number of random variables— number of values

— Inference complexity. To compute some queries requires
O(d") steps.

— Acquisition problem. Who is going to define all of the
probability entries?
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Pneumonia example. Complexities.

* Space complexity.
— Pneumonia (2 values: T,F), Fever (2: T,F), Cough (2: T,F)
WBCcount (3: high, normal, low), paleness (2: T,F)
— Number of assignments: 2*2*2*3*2=48
— We need to define at least 47 probabilities.
* Time complexity.
— Assume we need to compute the probability of
Pneumonia=T from the full joint

P(Pneumonia=T) =

= ;ﬁ ;F Z ;FP(Fever =i,Cough = j,WBCcount =k, Pale=u
itr,F jOr,F k=h,n,l ulIT,

— Sum over 2*2*3*2=24 combinations
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M odeling uncertainty with probabilities

* Knowledge based system era (70s — early 80’s)
— Extensional non-probabilistic models

— Probability techniques avoided because of space, time an
acquisition bottlenecks in defining full joint distributions

— Negative effect on the advancement of KB systems and A
in 80s in general

» Breakthrough (late 80s, beginning of 90s)
— Bayesian belief networks
 Give solutions to the space, acquisition bottlenecks
« Significant mprovements in time cost of inferences
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Bayesian belief networks (BBNS)

Bayesian belief networks.

* Represent the full joint distribution more compactly with
smaller number of parameters.

» Take advantage of conditional and marginal independences
among components in the distribution

* A and B areindependent
P(A B) =P(A)P(B)
* A and B are conditionally independent given C
P(A,B|C)=P(A[C)P(B|C)
P(A[C,B)=P(A[C)
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Alarm system example.

* Assume your house has alarm system againsturglary.
You live in the seismically active area and the alarm system
can get occasionally set off by earthquake. You have two
neighborsMary andJohn, who do not know each other. If
they hear the alarm they call you, but this is not guaranteed.
* We want to represent the probability distribution of events:

— Burglary, Earthquake, Alarm, Mary calls and John calls

Causal relations

-~

C atarm )

N,

e G
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Bayesian belief network.

1. Graph reflecting direct (causal) dependencies between variablgs
2. Local conditional distributions relating variables and their parents

Burglary P(B) Earthquake P(E)

Gotneat
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Bayesian belief network.

P(B) P(E)
T F T F
Burglary )| 0.001 0.999 | ( Earthquake ) [0.002 0.998
P(A|B,E)
/ BE| T F

T T | 0.95 0.05
T F | 0.94 0.06
F T | 0.29 0.71
F F | 0.0010.999

PAIA) \ P(M|A)
Al T F A =
T | 0.90 0.1
F | 0.05 0.95

M-
©o
oy |
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Bayesian belief networks (general)

Two components: B = (S,0,) () B E
 Directed acyclic graph \f
— Nodes correspond to random variables A
— (Missing) links encode independences <>/
J M
* Parameters
— Local conditional probability distributions
for every variable-parent configuration  P(AIB,E)
BE| T F
P(X I pa(X;)) T T |095 0.05
Where: F T2 ot
pa(X;) - stand for parents oK F F | 0.0010.999
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Full joint distribution in BBNs

Full joint distribution is defined in terms of local conditional
distributions (viathe chain rule):

P(Xy, Xy X)) = |_| P(X; | pa(X;))

i=1,.n

E

of values to random variables
B=T,E=T,A=T,J=T,M=F J M

B
Example: O\(j})
Assume the following assignment A

Then its probability is:
PB=T,E=T,A=T,J=T,M=F) =

PB=T)PHE=T)P(A=T|B=T,E=T)RJ=T| A=T)PM =F| A=T)

CS 2001 Bayesian belief networks

| ndependencesin BBNs

» 3basicindependence structures

1. Burglary

-==-

1. JohnCallssindependent of Burglary given Alarm

2. Burglaryisindependent of Earthquake (not knowing Alarm)
Burglary and Earthquakeecome dependent given Alarm !!

3. MaryCallsisindependent of JohnCalls given Alarm

CS 2001 Bayesian belief networks
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I ndependencesin BBNs

» Other dependences/independences in the network

/

Gomesii Gy

» Earthquake and Burglary agependent given MaryCalls

» Burglary and MaryCallsre dependent (not knowing Alarm)
» Burglary and RadioRepoar e independent given Earthquake
» Burglary and RadioRepoar e dependent given MaryCalls
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Parameter complexity problem

* In the BBN the full joint distribution is expressed as a product
of conditionals (of smaller) complexity

P(Xy, X5, X)) = l_l P(X; | pa(X,))

Parameters:
full joint: 2° =32

BBN: 2%+ 2(2%)+2(2) =20

Parameters to be defined:
full joint: 2°-1=31

BBN: 2% +2(2)+2(1) =10

CS 2001 Bayesian belief networks
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M odel acquisition problem

The structure of the BBN typically reflects causal relations
+« BBNSs are also sometime referred tocassal networks

» Causal structure is very intuitive in many applications domain
and it is relatively easy to obtain from the domain expert

Probability parameters of BBN correspond to conditional
distributions relating random variables and their parents

» The complexity of local distributions is much smaller than the
full joint

» Easier to estimate the probability parameters by consulting an
expert or by learning them from data

CS 2001 Bayesian belief networks

BBNSsbuilt in practice

* Invariousareas:
— Intelligent user interfaces (Microsoft)
— Troubleshooting, diagnosis of a technical device
— Medical diagnosis:
 Pathfinder (Intellipath)
* CPSC
e Munin
« QMR-DT
— Collaborative filtering
— Military applications
— Insurance, credit applications

CS 2001 Bayesian belief networks
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Diagnosis of car engine

» Diagnose the engine start problem

CS 2001 Bayesian belief networks

Car insurance example

» Predict claim costs (medical, liability) based on application dat

CS 2001 Bayesian belief networks
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(ICU) Alarm network

HYPOVOLEMIA LY FAILURE ANAPHYLAXIS PULMENARY EMBOLUS
ANESTHESIA,
INSUFFICIENT KINKED
PAP SHUNT | rUuBaATION  TUBE  DISCONMECTION

VELLME WENT MACHINE

BLOCD Y SETTIMNG
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MINUTE
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CPCS

» Computer-base®atientCaseSimulation system (CPCS-PM)
developed by Parker and Miller (at University of Pittsburgh)

odes and 867 arcs

i L b pe
g EE:‘.I- -—--rr-. = | ek .‘:—-“—-—- :
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QMR-DT

* Medical diagnosisin internal medicine

Bipartite network of disease/findings relations

OMR-DT derived from Internist-1/ QMR KB

534 discases

Oao0 oGO
agoc PR
40740 arcs 4040 findings
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Inferencein Bayesian networks

* BBN models compactly the full joint distribution by taking
advantage of existing independences between variables

» Simplifies the acquisition of a probabilistic model
* But we are interested in solving varida$er ence tasks:
— Diagnostic task. (from effect to cause)
P(Burglary |JohnCalls =T)
—Prediction task. (from causeto effect)
P(JohnCalls | Burglary =T)
— Other probabilistic queries (queries on joint distributions).
P(Alarm )

* Question: Can we take advantage of independences to constr
special algorithms and speeding up the inference?

LiCt

CS 2001 Bayesian belief networks
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I nference in Bayesian networ k

Bad news:

— Exact inference problem in BBNs is NP-hard (Cooper)
— Approximate inference is NP-hard (Dagum, Luby)

But very often we can achieve significant improvements
Assume our Alarm network

Gomesii Gy

Assume we want to compute:P(J =T)
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Inferencein Bayesian networks

Computing: P(J=T)

Approach 1. Blind approach.

* Sum out all uninstantiated variables from the full joint,

» express the joint distribution as a product of conditionals

PJ=T)=

= ; ; ; ; PB=b,E=e,A=2a,]=T,M =m)
:%;%%P(J =T|A=a)P(M =m|A=a)P(A=aB=b,E=€)P(B=b)P(E=¢)
Computational cost:

Number of additionst5
Number of products: 16*4#4

CS 2001 Bayesian belief networks
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Inferencein Bayesian networks

Approach 2. Interleave sums and products

» Combines sums and product in a smart way (multiplications
by constants can be taken out of the sum)

PJ=T)=

:b;t;agm;pp('] =T|A=a)P(M =m|A=a)P(A=aB=b,E=€)P(B=b)P(E=¢€)
=2 2 2PUSTIAZIAM =ml A=3RB=b) 5 PA=a|B=bE=6RE=¢]
= a;:P(J =T|A= a)[gt P(M =m| A:a)][t;: P(B=b)[ %p(A:m B=b,E=&P(E =]

Computational cost:
Number of additions: 1+ 2*(1)+2*(1+2*(1)%=
Number of products: 2*(2+2*(1)+2*(2*(1)))t6
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Inferencein Bayesian networks

» The smart interleaving of sums and products can help us to
speed up the computation of joint probability queries

* What if we want to computeP(B =T,J =T)
P(B=T,J=T)=
= YPUT|A=3)[ ) PM=m|A=a)][PB=T)[ ) MA=a|B=T,E=eP(E=6)]

NS B N | B B

= a;PP(J =T|A= a)[rr;t P(M =m| A=a)] [gp P(B= b)[a;:P(A: a|B=bE=¢P(E=¢)]]

* A lot of shared computation
— Smart cashing of results can save the time for more querie

[92)

CS 2001 Bayesian belief networks
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Inferencein Bayesian networks

» The smart interleaving of sums and products can help us to
speed up the computation of joint probability queries

» What if we want to computeP(B =T,J =T)
PB=T,J=T)=

=;P(J =T|A=4 [gp (M =m| A=a)] P(B=T)[Q;P(/°~=él| B=T,E=gP[E=6]

I

:a;:P(J =T|A= a)[;t P(M =m| A=a) [t; P(B:b)[;P(A:a| B=b,E=ePE=0)]

* A lot of shared computation
— Smart cashing of results can save the time if more queries
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Inferencein Bayesian networks

* When cashing of results becomes handy?
* What if we want to compute a diagnostic query:

PB=T,J=T)
P(J=T)

PB=T|J=T)=

» Exactly probabilities we have just compared !!
* There are other queries when cashing and ordering of sums
and products can be shared and saves computation
P(B,J =T)
P(J=T)
» General technique: Variable elimination

P(B|J=T)= =aP(B,J =T)
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Inferencein Bayesian networks

* General idea of variable elimination

P(True) =1=
:a;[»;pP(J = |A=a)][ﬂ;P(M =m| A=a)][gpP(B=b)[;:P(A=a| B=bE=gP(E=6)]
i < o N - W,
f,(a) f,, (a) fe(a,b)
\_ _/
~
Variable order A fa(2)
i :
Q‘J/i} g Resultscashedin
the tree structure

E
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I nference in Bayesian networ k

» Exact inference algorithms:
— Symbolic inference (D’Ambrosio)
— Recursive decomposition (Cooper)
— Message passing algorithm (Pearl)

— Clustering and joint tree approach (Lauritzen,
Spiegelhalter)

— Arc reversal (Olmsted, Schachter)

* Approximateinference algorithms:
— Monte Carlo methods:
» Forward sampling, Likelihood sampling
— Variational methods

CS 2001 Bayesian belief networks
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M essage passing algorithm (Pearl)
» Suitable when we want to compute the probability distribution
of X given an evidencg, P(X |E)
N N E+
;\ 7
Effect of evidence on X \ l//
passed to X via its local
neighborhood / X\
X :

CS 2001 Bayesian belief networks

L ear ning Bayesian belief networks
* Why learning?

— “subjective” estimates of conditional probability
parameters by a human

* need to adapt parameters in the light of
observed data

— large databases available

 uncover important probabilistic dependencies
from data and use them in inference tasks

CS 2001 Bayesian belief networks
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L earning of BBN

L earning. Two steps:
— Learning of the network structure
— Learning of parameters of conditional probabilities
* Variables:
— Observable — values present in every data sample
— Hidden — values are never in the sample

— Missing values — values sometimes present,
sometimes not

e Here
— learning parameters for the fixed structure
— All variables are observable

CS 2001 Bayesian belief networks

L ear ning via parameter estimation

We haveadataset D ={d,,d,,..,d }
of examples d =<x, >

Where x, is a vector of assignments of values to random
variablesx

We havea modd of the distribution over variables irX
with parameters®

Objective: find parameters® that fit the data the best

There are various criteria for defining the best set of
parameters

CS 2001 Bayesian belief networks
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Parameter estimation. Criteria.

* Maximum likelihood (ML)
maximize P(D |©,¢)

¢ - represents prior (background) knowledge

* Maximum a posteriori probability (MAP)
maximize P(®]|D,¢)

P(D|6,4)P(©]¢)

PO =008
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Parameter estimation. Criteria.

» Using a single set of parameters (either ML or MAP) may not
be the best solution

— two very different parameter settings can be close in termg
of probability, using only one of them in inference may
introduce a strong bias

» Solution to this: Full Bayesian approach
— Consider all parameter settings and average the result
in inference tasks

P(A|D.&) =[P(A]©,5)p(@]D,<)de

CS 2001 Bayesian belief networks
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Parameter estimation. Coin example.

* Assume we have a coin, that is biased
— Outcomes: two possible values -- head or tail
— We would like to estimate the probability of a head/tail
Data: D -- a sequence dfl outcomes (tails and heads)
N, - number of heads seenN, - number of tails seen

Model: probability of a head6
Maximum likelihood estimate of6
6w =argmax P(D|6,¢)
8
Likelihood of data: P(D |8,&) = 8™ (1-0)":

Solution: 6, =—r=—-21—
N N, +N,
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Parameter estimation. Coin example.

Maximum a posteriori estimate 6y =argmax P(6 | D, ¢)
g
p@|D.&) = PCIEOIPEIE)  \ia Bayesrule)
P(D[$)
P(D |6,¢é) -isthelikelihood of data
P(6 [€) -istheprior probability on &
Choice of prior: Beta distribution
r(a +a ) a,-1 a,-1
P@|¢é) =Beta@|a,,a,) =———2L2 0" (1-0)"
@1$) @la,.a,) CARCH 1-6)
Beta distribution “fits” binomial samplingconjugate choices
P(D|6,¢é)Beta(6 |a,,a,) _

P(OID,&) = o1 = Beta(6]a, + N,,a, + N,)

6 = a,+ N,
Solution: MAP a,+a,+ N, +N,

CS 2001 Bayesian belief networks
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Beta distribution

. .
— a=0.5, B=0.5
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Estimates of parameters.

+ Solutions for the coin toss with two outcomes can be extende
to problems with multiple outcoméag. rolling a dice).

Data: a sequence df outcomes
N. - anumber of times an outcomei has been seen

l k
Model parameters: 6 =(6,,6,,...6,) st. Zé’i =1
N,

ML estimate: 6, =WI

MAP estimate (using the Dirichlet prior):

P(o1D,9="PIEOTHE 1202 0) < g, 4.0+,
P __a +N;

i,MAP i:Z.k(ai_'_ NI)

CS 2001 Bayesian belief networks
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L ear ning of parameters of BBNs

* Notation:
— i ranges over all possible variabled,..,n
—j=1,..,9 ranges over all possible parent combinations
— k=1,..,r ranges over all possible variable values

6ij is a vector of Eijk representing parameters of conditic
r

probability distribution; such thatz1 0, =1

Nijk - a number of instances in the dataset where parents ha
vraluej and the child valuk

N; = Zl N

Q;; - prior counts

CS 2001 Bayesian belief networks
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Estimates of parametersof BBN

* Two assumptions:
— Sampleindependence

P(D]©,€) = rl p(D, 1©,€)

— Parameter independence

n

P(©1D,)=[][] P4, 1D.)

j
Parameters of each node-parents conditional can be
optimized independently

CS 2001 Bayesian belief networks
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Estimates of parametersof BBN

* Much like a (multiway)coin toss. We observe outcomes of

random variable values for every combination of values of itS
parent nodes.

r
Estimate of thevector  6;;  st. Zl O =1
: Nije _
ML estimate: 6, =——
KON,

ij
MAP estimate: Use Dirichlet distribution asa prior

PeID.)= P(Dlé’é)ggg%%az"ak) =Dir(9]; +Ny..a, +N,)

6. = g+ Nijk
ik — + N
Z i ijk
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ML Course
CS2750 Machine Learning, Spring 2002

Instructor: Milos Hauskr echt

Monday, Wednesday — 4:00-5:20pm, MIB 113
web page: http://www.cs.pitt.edu/~milos/courses/cs2750/

Covers modern machine learning techniques, including
learning of BBNSs, their structures and parameters in different
settings, as well as, many other learning frameworks, such ag
neural networks, support vector machines etc.
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