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Milos’ research interests

Artificial Intelligence
• Planning, reasoning and optimization in the presence of 

uncertainty

• Machine learning

• Applications:

– medicine

– Finance and investments

Main research focus:
• Models of high dimensional stochastic problems and  their 

efficient solutions
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KB for medical diagnosis.
We want to build a KB system for the diagnosis of pneumonia.

Problem description:
• Disease: pneumonia

• Patient symptoms (findings, lab tests):
– Fever, Cough, Paleness, WBC (white blood cells) count, 

Chest pain, etc.

Representation of a patient case: 
• Statements that hold (are true) for that patient.

E.g:

Diagnostic task: we want to infer whether the patient suffers 
from the pneumonia or not given the symptoms

Fever =True
Cough =False
WBCcount=High
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Uncertainty
To make diagnostic inference possible we need to represent 

rules or axioms that relate symptoms and diagnosis 
Problem: disease/symptoms relation is not deterministic (things 

may vary from patient to patient) – it is uncertain
• Disease           Symptoms uncertainty

– A patient suffering from pneumonia may not have fever all 
the times, may or may not have a cough, white blood cell 
test can be in a normal range.

• Symptoms          Disease uncertainty
– High fever is typical for many diseases (e.g. bacterial 

diseases) and does not point specifically to pneumonia

– Fever, cough, paleness, high WBC count combined do not 
always point to pneumonia
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Modeling the uncertainty.

• How to describe, represent the relations in the presence of 
uncertainty? 

• How to manipulate such knowledge to make inferences?

– Humans can reason with uncertainty. 

3QHXPRQLD
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Methods for representing uncertainty

KB systems based on propositional and first-order logic often  
represent uncertain statements, axioms of the domain in terms of

• rules with various certainty factors
Very popular in 70-80s (MYCIN)

Problems: 
• Chaining of multiple inference rules (propagation of uncertainty)
• Combinations of rules with the same conclusions
• After some number of combinations results not intuitive.

1. The stain of the organism is gram-positive, and
2. The morphology of the organism is coccus, and
3. The growth conformation of the organism is chains
with certainty 0.7
the identity of the organism is streptococcus

If

Then
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Representing certainty factors

• Facts (propositional statements about the world) are assigned  
some certainty number reflecting the belief in that the 
statement is satisfied:

• Rules incorporate tests on the certainty values

• Methods for combination of conclusions

7.0)( == TruePneumoniaCF

0.8CF  with  ])1,7.0[in     (])1,5.0[in     ( =→∧ CBA

0.8CF  with  ])1,7.0[in     (])1,5.0[in     ( =→∧ CBA

0.9CF  with  ])1,9.0[in     (])1,8.0[in     ( =→∧ CDE

9.0]8.0;9.0max[)( ==CCF
72.08.0*9.0)( ==CCF

98.08.0*9.08.09.0)( =−+=CCF

?
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Probability theory

a well-defined coherent theory for representing uncertainty and 
for reasoning with it

Representation:
Proposition statements – assignment of values to random 

variables

Probabilities over statements model the degree of belief in these 
statements 

001.0)( == TruePneumoniaP

0009.0),( === TrueFeverTruePneumoniaP

97.0),,( ==== FalseCoughnormalWBCcountFalsePneumoniaP

005.0)( == highWBCcountP

TruePneumonia = highWBCcount =
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Joint probability distribution
Joint probability distribution (for a set variables)
• Defines probabilities for all possible assignments to values of 

variables in the set

)(WBCcountP

005.0 993.0 002.0

),( WBCcountpneumoniaP

high normal low

Pneumonia True
False

WBCcount

0008.0
0042.0

0001.0
9929.0

0001.0
0019.0

)(PneumoniaP

001.0
999.0

Marginalization (summing of rows, or columns)
- summing out variables

table32×
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Conditional probability distribution

Conditional probability distribution:
• Probability distribution of A given (fixed B)

• Conditional probability is defined in terms of joint 
probabilities

• Joint probabilities can be expressed in terms of conditional 
probabilities

• Conditional probability – is useful fordiagnostic reasoning
– the effect of a symptoms (findings) on the disease

),,|( TrueCoughhighWBCcountTrueFeverTruePneumoniaP ====

)(

),(
)|(

BP

BAP
BAP =

)()|(),( BPBAPBAP =
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Modeling uncertainty with probabilities

• Full joint distribution: joint distribution over all random 
variables defining the domain
– it is sufficient to represent the complete domain and to do 

any type of probabilistic  reasoning 

Problems:
– Space complexity. To store full joint distribution requires 

to remember             numbers.
n – number of random variables, d – number of values

– Inference complexity. To compute some queries requires        
.            steps. 

– Acquisition problem. Who is going to define all of the 
probability entries?       

 )(dnO

 )(dnO
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Pneumonia example. Complexities.

• Space complexity. 

– Pneumonia (2 values: T,F), Fever (2: T,F), Cough (2: T,F), 
WBCcount (3: high, normal, low), paleness (2: T,F)

– Number of assignments: 2*2*2*3*2=48

– We need to define at least 47 probabilities.

• Time complexity.

– Assume we need to compute the probability of 
Pneumonia=T from the full joint

– Sum over 2*2*3*2=24 combinations

== )( TPneumoniaP

∑ ∑ ∑ ∑
∈ ∈ = ∈

=====
FTi FTj lnhk FTu

uPalekWBCcountjCoughiFeverP
, , ,, ,

),,,(
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Modeling uncertainty with probabilities

• Knowledge based system era (70s – early 80’s)

– Extensional non-probabilistic models 

– Probability techniques avoided because of space, time and 
acquisition bottlenecks in defining full joint distributions

– Negative effect on the advancement of KB systems and AI 
in 80s in general 

• Breakthrough  (late 80s, beginning of 90s)

– Bayesian belief networks
• Give solutions to the space, acquisition bottlenecks

• Significant mprovements in time cost of inferences
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Bayesian belief networks (BBNs)

Bayesian belief networks.
• Represent the full joint distribution more compactly with 

smaller number of parameters. 

• Take advantage of conditional and marginal independences 
among components in the distribution

• A and B are independent

• A and B are conditionally independent given C
)()(),( BPAPBAP =

)|()|()|,( CBPCAPCBAP =
)|(),|( CAPBCAP =
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Alarm system example.
• Assume your house has an alarm system against burglary. 

You live in the seismically active area and the alarm system 
can get occasionally set off by an earthquake. You have two 
neighbors, Mary and John, who do not know each other. If 
they hear the alarm they call you, but this is not guaranteed. 

• We want to represent the probability distribution of events:

– Burglary, Earthquake, Alarm, Mary calls and John calls

%XUJODU\

-RKQ&DOOV

$ODUP

(DUWKTXDNH

0DU\&DOOV

Causal relations
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Bayesian belief network.

%XUJODU\ (DUWKTXDNH

-RKQ&DOOV 0DU\&DOOV

$ODUP

3�%� 3�(�

3�$_%�(�

3�-_$�
3�0_$�

1. Graph reflecting direct (causal) dependencies between variables
2. Local conditional distributions relating variables and their parents
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Bayesian belief network.

%XUJODU\ (DUWKTXDNH

-RKQ&DOOV 0DU\&DOOV

$ODUP
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Bayesian belief networks (general)

Two  components:

• Directed acyclic graph
– Nodes correspond to random variables 

– (Missing) links encode independences

• Parameters
– Local conditional probability distributions

for every variable-parent configuration

))(|( ii XpaXP

A

B

MJ

E),( SSB Θ=

)( iXpa - stand for parents of  Xi

Where:

%���( 7�������)

7���7 �����������
7���)����������������
)���7����������������
)���)����������������

3�$_%�(�
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Full joint distribution in BBNs

Full joint distribution is defined in terms of local conditional 
distributions (via the chain rule):

))(|(),..,,(
,..1

21 ∏
=

=
ni

iin XpaXXXX PP

M

A

B

J

E

====== ),,,,( FMTJTATETBP

Example:

)|()|(),|()()( TAFMPTATJPTETBTAPTEPTBP =========

Then its probability is:

Assume the following assignment
of values to random variables

FMTJTATETB ===== ,,,,
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Independences in BBNs
• 3 basic independence structures

1. JohnCallsis independent of Burglary given Alarm

2. Burglary is independent of Earthquake (not knowing Alarm) 
Burglary and Earthquake become dependent given Alarm !!

3. MaryCallsis independent of JohnCalls given Alarm

%XUJODU\

-RKQ&DOOV

$ODUP

%XUJODU\

$ODUP

(DUWKTXDNH

-RKQ&DOOV

$ODUP

0DU\&DOOV

1. 2. 3.
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Independences in BBNs
• Other dependences/independences in the network

• Earthquake and Burglary are dependent given MaryCalls

• Burglary and MaryCallsare dependent (not knowing Alarm)

• Burglary and RadioReportare independent given Earthquake

• Burglary and RadioReportare dependent given MaryCalls

%XUJODU\

-RKQ&DOOV

$ODUP

(DUWKTXDNH

0DU\&DOOV

5DGLR5HSRUW
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Parameters:
full joint:

BBN:

Parameter complexity problem

• In the BBN the full joint distribution is expressed as a product
of conditionals (of smaller) complexity

%XUJODU\

-RKQ&DOOV

$ODUP

(DUWKTXDNH

0DU\&DOOV

))(|(),..,,(
,..1

21 ∏
=

=
ni

iin XpaXXXX PP

322 5 =

20)2(2)2(22 23 =++

Parameters to be defined:
full joint:

BBN:

3112 5 =−

10)1(2)2(22 2 =++
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Model acquisition problem

The structure of the BBN typically reflects causal relations

• BBNs are also sometime referred to as causal networks
• Causal structure is very intuitive in many applications domain 

and it is relatively easy to obtain from the domain expert

Probability parameters of BBN correspond to conditional 
distributions relating random variables and their parents

• The complexity of local distributions is much smaller than the 
full joint

• Easier to estimate the probability parameters by consulting an 
expert or by learning them from data
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BBNs built in practice

• In various areas:
– Intelligent user interfaces (Microsoft)

– Troubleshooting, diagnosis of a technical device

– Medical diagnosis:

• Pathfinder (Intellipath)

• CPSC

• Munin

• QMR-DT

– Collaborative filtering

– Military applications

– Insurance, credit applications
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Diagnosis of car engine

• Diagnose the engine start problem 

CS 2001 Bayesian belief networks

Car insurance example

• Predict claim costs (medical, liability) based on application data
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(ICU) Alarm network

CS 2001 Bayesian belief networks

CPCS
• Computer-based Patient Case Simulation system (CPCS-PM) 

developed by Parker and Miller (at University of Pittsburgh)

• 422 nodes and 867 arcs
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QMR-DT 

• Medical diagnosis in internal medicine

Bipartite network of disease/findings relations

CS 2001 Bayesian belief networks

Inference in Bayesian networks 

• BBN models compactly the full joint distribution by taking 
advantage of existing independences between variables

• Simplifies the acquisition of a probabilistic model

• But we are interested in solving various inference tasks:
– Diagnostic task. (from effect to cause)

– Prediction task.  (from cause to effect)

– Other probabilistic queries (queries on joint distributions).

• Question: Can we take advantage of independences to construct 
special algorithms and speeding up the inference?

)|( TJohnCallsBurglary =P

)|( TBurglaryJohnCalls =P

)( AlarmP



16

CS 2001 Bayesian belief networks

Inference in Bayesian network

• Bad news: 
– Exact inference problem in BBNs is NP-hard (Cooper)
– Approximate inference is NP-hard (Dagum, Luby)

• But very often we can achieve significant improvements
• Assume our Alarm network

• Assume we want to compute:

%XUJODU\

-RKQ&DOOV

$ODUP

(DUWKTXDNH

0DU\&DOOV

)( TJP =
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Inference in Bayesian networks
Computing:
Approach 1. Blind approach.
• Sum out all uninstantiated variables from the full joint, 
• express the joint distribution as a product of conditionals

Computational cost:
Number of  additions: 15
Number of products: 16*4=64

== )( TJP

)()(),|()|()|(
, , , ,

eEPbBPeEbBaAPaAmMPaATJP
FTb FTe FTa FTm

========== ∑ ∑ ∑ ∑
∈ ∈ ∈ ∈

),,,,(
, , , ,

mMTJaAeEbBP
FTb FTe FTa FTm

====== ∑ ∑ ∑ ∑
∈ ∈ ∈ ∈

)( TJP =
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Inference in Bayesian networks
Approach 2. Interleave sums and products
• Combines sums and product in a smart way (multiplications 

by constants can be taken out of the sum)

Computational cost:
Number of  additions: 1+ 2*(1)+2*(1+2*(1))=9
Number of products: 2*(2+2*(1)+2*(2*(1)))=16

== )( TJP

)](),|()[()|()|(
,, . ,

eEPeEbBaAPbBPaAmMPaATJP
FTeFTb FTa FTm

========== ∑∑ ∑ ∑
∈∈ ∈ ∈

]])(),|()[()][|()[|(
, , ,,

∑ ∑ ∑∑
∈ ∈ ∈∈

==========
FTm FTb FTeFTa

eEPeEbBaAPbBPaAmMPaATJP

)()(),|()|()|(
, , , ,

eEPbBPeEbBaAPaAmMPaATJP
FTb FTe FTa FTm

========== ∑ ∑ ∑ ∑
∈ ∈ ∈ ∈
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Inference in Bayesian networks

• The smart interleaving of sums and products can help us to 
speed up the computation of joint probability queries

• What if we want to compute:

• A lot of shared computation
– Smart cashing of results can save the time for more queries

),( TJTBP ==

=== ),( TJTBP

])](),|()[()][|()[|(
, ,,

∑ ∑∑
∈ ∈∈

==========
FTm FTeFTa

eEPeETBaAPTBPaAmMPaATJP

== )( TJP

]])(),|()[()][|()[|(
, , ,,

∑ ∑ ∑∑
∈ ∈ ∈∈

==========
FTm FTb FTeFTa

eEPeEbBaAPbBPaAmMPaATJP
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Inference in Bayesian networks

• The smart interleaving of sums and products can help us to 
speed up the computation of joint probability queries

• What if we want to compute:

• A lot of shared computation
– Smart cashing of results can save the time if more queries

),( TJTBP ==

=== ),( TJTBP

== )( TJP

]])(),|()[()][|()[|(
, , ,,

∑ ∑ ∑∑
∈ ∈ ∈∈

==========
FTm FTb FTeFTa

eEPeEbBaAPbBPaAmMPaATJP

])](),|()[()][|()[|(
, ,,

∑ ∑∑
∈ ∈∈

==========
FTm FTeFTa

eEPeETBaAPTBPaAmMPaATJP
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Inference in Bayesian networks

• When cashing of results becomes handy?

• What if we want to compute a diagnostic query:

• Exactly probabilities we have just compared !!

• There are other queries when cashing and ordering of sums 
and products can be shared and saves computation

• General technique: Variable elimination

)(

),(
)|(

TJP

TJTBP
TJTBP

=
=====

),(
)(

),(
)|( TJB

TJP

TJB
TJB ==

=
=== P

P
P α
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Inference in Bayesian networks

• General idea of variable elimination 

]])(),|()[()][|()][|([
, , ,, ,

∑ ∑ ∑∑ ∑
∈ ∈ ∈∈ ∈

==========
FTm FTb FTeFTa FTj

eEPeEbBaAPbBPaAmMPaAjJP

== 1)(TrueP

)(af J )(af M
),( baf E

)(af B
A

J M B

E

Variable order:

Results cashed in
the tree structure
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Inference in Bayesian network

• Exact inference algorithms:
– Symbolic inference (D’Ambrosio)
– Recursive decomposition (Cooper)
– Message passing algorithm (Pearl)
– Clustering and joint tree approach (Lauritzen, 

Spiegelhalter) 
– Arc reversal (Olmsted, Schachter)

• Approximate inference algorithms:
– Monte Carlo methods:

• Forward sampling, Likelihood sampling
– Variational methods 
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Message passing algorithm (Pearl)

• Suitable when we want to compute the probability distribution 
of X given an evidence E, )|( EXP

E+

E-

X

Effect of evidence on X
passed to X via its local
neighborhood
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Learning Bayesian belief networks

• Why learning?

– “subjective” estimates of conditional probability 
parameters by a human

• need to adapt parameters in the light of 
observed data

– large databases available 

• uncover important probabilistic dependencies 
from data  and use them in inference tasks
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Learning of BBN

Learning. Two steps:

– Learning of the network structure

– Learning of parameters of conditional probabilities

• Variables:
– Observable – values present in every data sample

– Hidden – values are never in the sample

– Missing values – values sometimes present, 
sometimes not

• Here:
– learning parameters for the fixed structure

– All variables are observable 

CS 2001 Bayesian belief networks

Learning via parameter estimation

• We have a dataset
of examples 

Where         is a vector of assignments of values to random 
variables X

• We have a model of the distribution over variables in X

with parameters 

• Objective: find parameters         that fit the data the best 

• There are various criteria for defining the best set of 
parameters

},..,,{ 21 ndddD =
>=< iid x

ix
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Parameter estimation. Criteria.

• Maximum likelihood (ML)

• Maximum a posteriori probability (MAP)

),|( ξΘDPmaximize

ξ - represents prior (background) knowledge

),|( ξDP Θmaximize

)|(

)|(),|(
),|(

ξ
ξξξ

DP

PDP
DP

ΘΘ=Θ
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Parameter estimation. Criteria.

• Using a single set of parameters (either ML or MAP) may not 
be the best solution

– two very different parameter settings can be close in terms 
of probability, using only one of them in inference may 
introduce a strong bias

• Solution to this: Full Bayesian approach
– Consider all parameter settings and average the result

in inference tasks

ΘΘΘ∆=∆ ∫
Θ

dDpPDP ),|(),|(),|( ξξξ
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Parameter estimation. Coin example.

• Assume we have a coin, that is biased

– Outcomes: two possible values -- head or tail

– We would like to estimate the probability of a head/tail

θModel:  probability of a head

21 )1(),|( NNDP θθξθ −=

Data: D -- a sequence of N outcomes (tails and heads)

Maximum likelihood estimate of θ

21

11

NN

N

N

N
ML +

==θ

1N - number of heads seen 2N - number of tails seen

),|(maxarg ξθθ
θ

DPML =

Solution:

Likelihood of data:
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Parameter estimation. Coin example.

),|(
)|(

),|(),|(
),|( 2211

21 NNBeta
DP

BetaDP
DP ++== ααθ

ξ
ααθξθξθ

Choice of prior: Beta distribution

Maximum a posteriori estimate

Beta distribution “fits” binomial sampling -conjugate choices

2

1

2121

11

−+++
−+=

NN

N
MAP αα

αθ

11

21

12
21

21 )1(
)()(

)(
),|()|( −− −

ΓΓ
+Γ== αα θθ

αα
ααααθξθ BetaP

),|(maxarg ξθθ
θ

DPMAP =

)|(

)|(),|(
),|(

ξ
ξθξθξθ

DP

PDP
DP = (via Bayes rule)

),|( ξθDP - is the likelihood of data
)|( ξθP - is the prior probability on θ

Solution:
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Beta distribution

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

3

3.5

α=0.5, β=0.5
α=2.5, β=2.5
α=2.5, β=5
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Estimates of parameters.

• Solutions for the coin toss with two outcomes can be extended 
to problems with multiple outcomes (e.g. rolling a dice).

Data: a sequence of N outcomes

Model parameters:

ML estimate:

MAP estimate (using the Dirichlet prior):

N

Ni
MLi =,θ

),..,|(
)|(

),..,|(),|(
),|( 11

21
kk

k NNDir
DP

DirDP
DP ++== ααθ

ξ
αααθξθξθ

( )∑
=

−+
−+=

ki
ii

ii
MAPi kN

N

,..1

,

1

α
αθ

),,( 21 kθθθθ �= 1
1

=∑
=

k

i
iθs.t.

iN - a number of times an outcome i has been seen
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Learning of parameters of BBNs

• Notation:

– i ranges over all possible variables i=1,..,n

– j=1,..,q ranges over all possible parent combinations

– k=1,..,r ranges over all possible variable values

ijθ is a vector of           representing parameters of conditional ijkθ
probability distribution; such that 1

1

=∑
=

ijk

r

k

θ

ijkN - a number of instances in the dataset where parents have
value j and the child value k

ijk

r

k
ij NN ∑

=

=
1

ikjα - prior counts
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Estimates of parameters of BBN

• Two assumptions:

– Sample independence

– Parameter independence

∏∏
= =

=Θ
n

i

q

j
ij

i

DpDP
1 1

),|(),|( ξθξ

∏
=

Θ=Θ
N

u
uDpDP

1

),|(),|( ξξ

Parameters of each node-parents conditional can be
optimized independently
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Estimates of parameters of BBN

• Much like a (multi-way)coin toss. We observe outcomes of 
random variable values  for every combination of values of its 
parent nodes. 

ijθEstimate of the vector

ML estimate: 
ij

ijk
ijk N

N
=θ

MAP estimate:

),..,|(
)|(

),..,|(),|(
),|( 11

21
kk

k NNDir
DP

DirDP
DP ++== ααθ

ξ
αααθξθξθ

rN

N
r

k
ijkijk

ijkijk
ijk

−



 +

−+
=

∑
=1

1

α

α
θ

Use Dirichlet distribution as a prior

1
1

=∑
=

ijk

r

k

θs.t.
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ML Course

CS2750 Machine Learning,  Spring 2002

Instructor: Milos Hauskrecht

Monday, Wednesday – 4:00-5:20pm, MIB 113

web page: http://www.cs.pitt.edu/~milos/courses/cs2750/

• Covers modern machine learning techniques, including 
learning of BBNs, their structures and parameters in different 
settings, as well as, many other learning frameworks, such as 
neural networks, support vector machines etc.


