Density estimation

Milos Hauskrecht
milos@cs.pitt.edu
5329 Sennott Square

Density estimation is an unsupervised learning problem

- **Goal**: Learn relations among attributes in the data

Data: \(D = \{ D_1, D_2, \ldots, D_n \} \)

\(D_i = \mathbf{x}_i \) a vector of attribute values

Attributes:
- modeled by random variables \(X = \{ X_1, X_2, \ldots, X_d \} \) with
 - Continuous or discrete valued variables

Density estimation: learn the underlying probability distribution: \(p(X) = p(X_1, X_2, \ldots, X_d) \) from \(D \)
Density estimation

Data: \(D = \{D_1, D_2, ..., D_n\} \)
\(D_i = x_i \) a vector of attribute values

Objective: estimate the underlying probability distribution over variables \(X \), \(p(X) \), using examples in \(D \)

| true distribution \(p(X) \) | n samples \(D = \{D_1, D_2, ..., D_n\} \) | estimate \(\hat{p}(X) \) |

Standard (iid) assumptions: Samples
- are independent of each other
- come from the same (identical) distribution (fixed \(p(X) \))

Density estimation

Types of density estimation:

Parametric
- the distribution is modeled using a set of parameters \(\Theta \)
 \[\hat{p}(X) = p(X | \Theta) \]
- **Example:** mean and covariances of a multivariate normal
- **Estimation:** find parameters \(\Theta \) describing data \(D \)

Non-parametric
- The model of the distribution utilizes all examples in \(D \)
- As if all examples were parameters of the distribution
- **Examples:** Nearest-neighbor
Learning via parameter estimation

In this lecture we consider **parametric density estimation**

Basic settings:
- A set of random variables \(\mathbf{X} = \{X_1, X_2, \ldots, X_d\} \)
- **A model of the distribution** over variables in \(\mathbf{X} \) with parameters \(\Theta : \hat{p}(\mathbf{X} | \Theta) \)
- **Data** \(D = \{D_1, D_2, \ldots, D_n\} \)

Objective: find parameters \(\Theta \) such that \(p(\mathbf{X} | \Theta) \) fits data \(D \) the best

Parameter estimation in statistics

- **Maximum likelihood (ML)**
 - maximize \(p(D | \Theta, \xi) \)
 - yields: one set of parameters \(\Theta_{ML} \)
 - the target distribution is approximated as:
 \[\hat{p}(\mathbf{X}) = p(\mathbf{X} | \Theta_{ML}) \]
- **Bayesian parameter estimation**
 - uses the posterior distribution over possible parameters
 \[p(\Theta | D, \xi) = \frac{p(D | \Theta, \xi)p(\Theta | \xi)}{p(D | \xi)} \]
 - Yields: all possible settings of \(\Theta \) (and their “weights”)
 - The target distribution is approximated as:
 \[\hat{p}(\mathbf{X}) = p(\mathbf{X} | D) = \int p(\mathbf{X} | \Theta)p(\Theta | D, \xi) d\Theta \]
Parameter estimation

Other possible criteria:
• Maximum a posteriori probability (MAP)
 maximize \(p(\Theta \mid D, \xi) \) (mode of the posterior)
 – Yields: one set of parameters \(\Theta_{MAP} \)
 – Approximation:
 \[\hat{p}(X) = p(X \mid \Theta_{MAP}) \]
• Expected value of the parameter
 \(\hat{\Theta} = E(\Theta) \) (mean of the posterior)
 – Expectation taken with regard to posterior \(p(\Theta \mid D, \xi) \)
 – Yields: one set of parameters
 – Approximation:
 \[\hat{p}(X) = p(X \mid \hat{\Theta}) \]

Parameter estimation. Coin example.

Coin example: we have a coin that can be biased
Outcomes: two possible values -- head or tail
Data: \(D \) a sequence of outcomes \(x_i \) such that
 • head \(x_i = 1 \)
 • tail \(x_i = 0 \)

Model: probability of a head \(\theta \)
 probability of a tail \((1 - \theta) \)
Objective:
We would like to estimate the probability of a head \(\hat{\theta} \)
from data
Parameter estimation. Example.

• Assume the unknown and possibly biased coin
• Probability of the head is \(\theta \)
• Data:
 H H T T H H T H T T T H T H H H T H H T H T
 – Heads: 15
 – Tails: 10

What would be your estimate of the probability of a head?

\(\tilde{\theta} = ? \)

Solution: use frequencies of occurrences to do the estimate

\[
\tilde{\theta} = \frac{15}{25} = 0.6
\]

This is the maximum likelihood estimate of the parameter \(\theta \)
Probability of an outcome

Data: D a sequence of outcomes x_i such that
- **head** $x_i = 1$
- **tail** $x_i = 0$

Model:
- probability of a head θ
- probability of a tail $(1-\theta)$

Assume: we know the probability θ

Probability of an outcome of a coin flip x_i

$$P(x_i \mid \theta) = \theta^{x_i} (1-\theta)^{(1-x_i)} \quad \text{Bernoulli distribution}$$

- Combines the probability of a head and a tail
- So that x_i is going to pick its correct probability
- Gives θ for $x_i = 1$
- Gives $(1-\theta)$ for $x_i = 0$

Probability of a sequence of outcomes.

Data: D a sequence of outcomes x_i such that
- **head** $x_i = 1$
- **tail** $x_i = 0$

Model:
- probability of a head θ
- probability of a tail $(1-\theta)$

Assume: a sequence of independent coin flips

$D = H H T H T H$ (encoded as $D= 110101$)

What is the probability of observing the data sequence D:

$$P(D \mid \theta) = ?$$
Probability of a sequence of outcomes.

Data: D a sequence of outcomes x_i such that
- head $x_i = 1$
- tail $x_i = 0$

Model: probability of a head θ
probability of a tail $(1-\theta)$

Assume: a sequence of coin flips $D = H H T H T H$
encoded as $D= 110101$

What is the probability of observing a data sequence D:

$$P(D \mid \theta) = \theta \theta (1-\theta) \theta (1-\theta) \theta$$

likelihood of the data
Probability of a sequence of outcomes.

Data: \(D \) a sequence of outcomes \(x_i \) such that
- **head** \(x_i = 1 \)
- **tail** \(x_i = 0 \)

Model: probability of a head \(\theta \)
probability of a tail \((1 - \theta) \)

Assume: a sequence of coin flips \(D = H H T H T H \)
encoded as \(D = 110101 \)

What is the probability of observing a data sequence \(D \):

\[
P(D \mid \theta) = \theta \theta (1 - \theta) \theta (1 - \theta) \theta
\]

\[
P(D \mid \theta) = \prod_{i=1}^{6} \theta^{x_i} (1 - \theta)^{(1-x_i)}
\]

Can be rewritten using the Bernoulli distribution:

The goodness of fit to the data

Learning: we do not know the value of the parameter \(\theta \)

Our learning goal:
- Find the parameter \(\theta \) that fits the data \(D \) the best?

One solution to the “best”: Maximize the likelihood

\[
P(D \mid \theta) = \prod_{i=1}^{n} \theta^{x_i} (1 - \theta)^{(1-x_i)}
\]

Intuition:
- more likely are the data given the model, the better is the fit

Note: Instead of an error function that measures how bad the data fit the model we have a measure that tells us how well the data fit:

\[
Error(D, \theta) = -P(D \mid \theta)
\]
Maximum likelihood (ML) estimate.

Likelihood of data:
\[P(D \mid \theta, \xi) = \prod_{i=1}^{n} \theta^{x_i} (1 - \theta)^{(1-x_i)} \]

Maximum likelihood estimate
\[\theta_{ML} = \arg \max_{\theta} P(D \mid \theta, \xi) \]

Optimize log-likelihood (the same as maximizing likelihood)
\[l(D, \theta) = \log P(D \mid \theta, \xi) = \log \prod_{i=1}^{n} \theta^{x_i} (1 - \theta)^{(1-x_i)} = \]
\[\sum_{i=1}^{n} x_i \log \theta + (1 - x_i) \log(1 - \theta) = \log \theta \sum_{i=1}^{n} x_i + \log(1 - \theta) \sum_{i=1}^{n} (1 - x_i) \]

N₁ - number of heads seen N₂ - number of tails seen

Maximum likelihood (ML) estimate.

Optimize log-likelihood
\[l(D, \theta) = N_1 \log \theta + N_2 \log(1 - \theta) \]

Set derivative to zero
\[\frac{\partial l(D, \theta)}{\partial \theta} = \frac{N_1}{\theta} - \frac{N_2}{(1 - \theta)} = 0 \]

Solving
\[\theta = \frac{N_1}{N_1 + N_2} \]

ML Solution:
\[\theta_{ML} = \frac{N_1}{N} = \frac{N_1}{N_1 + N_2} \]
Maximum likelihood estimate. Example

• Assume the unknown and possibly biased coin
• Probability of the head is θ
• Data:

 H H T T H H T H T H T T H T H H H H T H H H H T

 – Heads: 15
 – Tails: 10

What is the ML estimate of the probability of a head and a tail?

\[\theta_{ML} = \frac{N_1}{N} = \frac{N_1}{N_1 + N_2} = \frac{15}{25} = 0.6 \]

\[(1 - \theta_{ML}) = \frac{N_2}{N} = \frac{N_2}{N_1 + N_2} = \frac{10}{25} = 0.4 \]