CS 1675 Introduction to ML
Lecture 3

Introduction to Machine Learning

Milos Hauskrecht
milos@cs.pitt.edu
5329 Sennott Square, x4-8845

people.cs.pitt.edu/~milos/courses/cs1675/

Administration

Instructor:
Prof. Milos Hauskrecht
milos@cs.pitt.edu
5329 Sennott Square, x4-8845

TA:
Amin Sobhani
ams543@pitt.edu
6804 Sennott Square
Homework assignment

Homework assignment 1 is out and due on Thursday
Two parts: Report + Programs

Submission:
• via Courseweb
• Report (submit in pdf)
• Programs (submit using the zip or tar archive)
• Deadline 4:00pm (prior to the lecture)

Rules:
• Strict deadline
• No collaboration on the programming and the report part

A learning system: basics

1. Data: \[D = \{d_1, d_2, \ldots, d_n\} \]
2. Model selection:
 - Select a model or a set of models (with parameters)
 E.g. \[y = ax + b \]
3. Choose the objective function
 - Squared error \[\frac{1}{n} \sum_{i=1}^{n} (y_i - f(x_i))^2 \]
4. Learning:
 - Find the set of parameters optimizing the error function
 - The model and parameters with the smallest error
5. Testing:
 - Apply the learned model to new data
 - E.g. predict \(y \)s for new inputs \(x \) using learned \(f(x) \)
 - Evaluate on the test data
A learning system: basics

1. Data: \(D = \{d_1, d_2, \ldots, d_n\} \)
2. Model selection:
 - Select a model or a set of models (with parameters)
 E.g. \(y = ax + b \)
3. Choose the objective function
 - Squared error
4. Learning:
 - Find the set of parameters optimizing the error function
 - The model and parameters with the smallest error
5. Testing:
 - Apply the learned model to new data
 - E.g. predict \(y_s \) for new inputs \(x \) using learned \(f(x) \)
 - Evaluate on the test data
A learning system: basics

1. Data: \(D = \{d_1, d_2, \ldots, d_n\} \)

2. Model selection:
 - Select a model or a set of models (with parameters)

 E.g. \(y = ax + b \)

3. Choose the objective function
 - Squared error \(\frac{1}{n} \sum_{i=1}^{n} (y_i - f(x_i))^2 \)

4. Learning:
 - Find the set of parameters optimizing the error function

 The model and parameters with the smallest error

5. Testing:
 - Apply the learned model to new data

 E.g. predict \(y \) for new inputs \(x \) using learned \(f(x) \)
 - Evaluate on the test data
A learning system: basics

1. Data: \(D = \{ d_1, d_2, \ldots, d_n \} \)

2. Model selection:
 - Select a model
 - E.g.

3. Choose the objective function
 - Square error

4. Learning:
 - Find the set of parameters optimizing the error function
 - The model and parameters with the smallest error

5. Testing:
 - Apply the learned model to new data
 - E.g. predict \(y_s \) for new inputs \(x \) using learned \(f(x) \)
 - Evaluate on the test data

Testing of learning models

- Simple holdout method
 - Divide the data to the training and test data

- Typically 2/3 training and 1/3 testing
Testing of models

Data set

Training set

Learn on the training set

The model

Evaluate on the test set

Learning process (second look)

1. Data
 – Understand the source of data
 – Real data may need a lot of cleaning/preprocessing
2. Model selection:
 – How to pick the models: manual/automatic methods
3. Choice of the objective (error or loss) function
 – Many functions possible: Squared error, negative log-likelihood, hinge loss
4. Learning:
 – Find the set of parameters optimizing the error function
5. Application/Testing:
 – Evaluate on the test data
 – Apply the learned model to new data
Data source and data biases

- **Understand the data source**
- **Understand the data your models will be applied to**
- **Watch out for data biases:**
 - Make sure the data we make conclusions on are the same as data we used in the analysis
 - It is very easy to derive “unexpected” results when data used for analysis and learning are biased

- **Results (conclusions) derived for a biased dataset do not hold in general !!!**

Data

Example: Assume you want to build an ML program for predicting the stock behavior and for choosing your investment strategy

Data extraction:
- pick companies that are traded on the stock market on January 2017
- Go back 30 years and extract all the data for these companies
- Use the data to build an ML model supporting your future investments

Question:
- Would you trust the model?
- Are there any biases in the data?
Data cleaning and preprocessing

Data may need a lot of:
• Cleaning
• Preprocessing (conversions)

Cleaning:
– Get rid of errors, noise,
– Removal of redundancies

Preprocessing:
– Renaming
– Rescaling (normalization)
– Discretization
– Abstraction
– Aggregation
– New attributes

Data preprocessing

• **Renaming** (relabeling) categorical values to numbers
 – dangerous in conjunction with some learning methods
 – numbers will impose an order that is not warranted

 High \rightarrow 2
 Normal \rightarrow 1
 Low \rightarrow 0

 True \rightarrow 2
 False \rightarrow 1
 Unknown \rightarrow 0

 Red \rightarrow 2
 Blue \rightarrow 1
 Green \rightarrow 0

• **Rescaling (normalization):** continuous values transformed to some range, typically [-1, 1] or [0,1].

• **Discretizations (binning):** continuous values to a finite set of discrete values

 ![Discretization Grid](image-url)
Data preprocessing

• **Abstraction:** merge together categorical values

• **Aggregation:** summary or aggregation operations, such as minimum value, maximum value, average etc.

• **New attributes:**
 – example: obesity-factor = weight/height

Model selection

• **What is the right model to learn?**
 – A prior knowledge helps a lot, but still a lot of guessing
 – Initial data analysis and visualization
 • We can make a good guess about the form of the distribution, shape of the function
 – Independences and correlations

• **Overfitting problem**
 – Take into account the **bias and variance** of error estimates
 – Simpler (more biased) model – parameters can be estimated more reliably (smaller variance of estimates)
 – Complex model with many parameters – parameter estimates are less reliable (large variance of the estimate)
Feature selection/dimensionality reduction

Feature/dimensionality reduction selection:
- One way to prevent overfitting for high dimensional data
 \[x_i = (x_i^1, x_i^2, ..., x_i^d) \quad d \quad \text{very large} \]
- It reduces the dimensionality of data and expresses them in terms of a smaller sets of inputs/features:
 - Feature filtering
 - Multiple features are combined together

Example: document classification
- thousands of documents, >10,000 different words
- Inputs: counts of occurrences of different words
- Overfit threat: too many parameters to learn, not enough samples to justify the estimates the parameters of the model

Solutions for overfitting

How to make the learner avoid overfitting?

- Hold some data out of the training set = validation set
 - Train (fit) on the training set (w/o data held out);
 - Check for the generalization error on the validation set, choose the model based on the validation set error (random re-sampling validation techniques)
Model selection using validation sets

- Select a model from multiple model choices
- Training set is split to training and validation set
- Validation set is used to decide which model is better

![Diagram showing the process of model selection using validation sets.]

Solutions for overfitting

How to make the learner avoid the overfit?

- **Regularization (Occam’s Razor)**
 - Explicit preference towards simple models
 - Penalize for the model complexity (number of parameters) by modifying the objective function

 \[
 \text{Objective function} = \text{error from the data fit} + \text{regularization penalty for the model complexity}
 \]

- Solved through the optimization
Objective criteria

• Measure how well the model fits the data:
 – Mean square error
 \[w^* = \arg \min_w \text{Error}(w) \quad \text{Error}(w) = \frac{1}{N} \sum_{i=1}^{N} (y_i - f(x_i, w))^2 \]
 – Maximum likelihood (ML) criterion
 \[\Theta^* = \arg \max_\Theta P(D | \Theta) \quad \text{Error}(\Theta) = -\log P(D | \Theta) \]
 – Maximum posterior probability (MAP)
 \[\Theta^* = \arg \max_\Theta P(\Theta | D) \quad P(\Theta | D) = \frac{P(D | \Theta)P(\Theta)}{P(D)} \]

Other criteria:
 – hinge loss (used in the support vector machines)

Learning

Learning = optimization problem

• Optimization problems can be hard to solve. Right choice of a model and an error function makes a difference.

• Parameter optimizations (continuous space)
 – Linear programming, Convex programming
 – Gradient methods: grad. descent, Conjugate gradient
 – Newton-Rhapson (2nd order method)
 – Levenberg-Marquard
 Some can be carried on-line on a sample by sample basis

• Combinatorial optimizations (over discrete spaces):
 • Hill-climbing
 • Simulated-annealing
 • Genetic algorithms
Parametric optimizations

- Sometimes can be solved directly but this depends on the objective function and the model
 - **Example:** squared error criterion for linear regression
- Very often the error function to be optimized is not that nice.
 \[Error(w) = f(w) \]
 \[w = (w_0, w_1, w_2 \ldots w_k) \]
 - a complex function of weights (parameters)
 Goal: \[w^* = \arg \min_w f(w) \]

- **Example of a possible method:** Gradient-descent method
 Idea: move the weights (free parameters) gradually in the error decreasing direction

Gradient descent method

- Descend to the minimum of the function using the gradient information

\[Error(w) \]
\[\frac{\partial}{\partial w} Error(w) |_{w^*} \]

- Change the parameter value of \(w \) according to the gradient
 \[w \leftarrow w^* + ? \]
Gradient descent method

- Descend to the minimum of the function using the gradient information

\[Error(w) \]

\[\frac{\partial}{\partial w} \left. Error(w) \right|_{w^*} \]

- Change the parameter value of w according to the gradient

\[w \leftarrow w^* - \frac{\partial}{\partial w} \left. Error(w) \right|_{w^*} \]

- New value of the parameter

\[w \leftarrow w^* - \alpha \frac{\partial}{\partial w} \left. Error(w) \right|_{w^*} \]

\[\alpha > 0 \quad \text{a learning rate (scales the gradient changes)} \]
Gradient descent method

- To get to the function minimum repeat (iterate) the gradient based update few times

![Gradient descent method diagram](image)

- **Problems**: local optima, saddle points, slow convergence
- More complex optimization techniques use additional information (e.g. second derivatives)

Batch vs on-line learning

- **Batch learning**: Error function looks at all data points

 E.g. \(Error(w) = \frac{1}{n} \sum_{i=1}^{n} (y_i - f(x_i, w))^2 \)

- **On-line learning**: separates the contribution from a data point

 \(Error_{ON-LINE}(w) = (y_i - f(x_i, w))^2 \)

- **Example**: On-line gradient descent

![Batch vs on-line learning diagram](image)

- **Advantages**: 1. simple learning algorithm
 2. no need to store data (on-line data streams)