Reinforcement learning

We want to learn a control policy: $\pi : X \rightarrow A$

We see examples of x (but outputs a are not given)

Instead of a we get a feedback r (reinforcement, reward) from a critic quantifying how good the selected output was

The reinforcements may not be deterministic

Goal: find $\pi : X \rightarrow A$ with the best expected reinforcements
Gambling example

- **Game:** 3 different biased coins are tossed
 - The coin to be tossed is selected randomly from the three options and I always see which coin I am going to play next
 - I make bets on head or tail and I always wage $1
 - If I win I get $1, otherwise I lose my bet

- **RL model:**
 - **Input:** X – a coin chosen for the next toss,
 - **Action:** A – choice of head or tail,
 - **Reinforcements:** {1, -1}

- **A policy** \(\pi : X \rightarrow A \)

<table>
<thead>
<tr>
<th>Example: (\pi :)</th>
<th>Coin1 (\rightarrow) head</th>
<th>Coin2 (\rightarrow) tail</th>
<th>Coin3 (\rightarrow) head</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\pi :)</td>
<td>head</td>
<td>tail</td>
<td>head</td>
</tr>
</tbody>
</table>

- **Learning goal:** find \(\pi^* : X \rightarrow A \) \(\pi^* : \) \(\) ?

maximizing future expected profits

\[
E(\sum_{t=0}^{T} \gamma^t r_t) \quad 0 \leq \gamma < 1
\]

a discount factor = present value of money
Expected rewards

- Expected rewards for $\pi : X \rightarrow A$

\[E(\sum_{t=0}^{T} r_t) \quad \text{Expectation over many possible reward trajectories for } \pi : X \rightarrow A \]

Expected discounted rewards

- Expected discounting rewards for $\pi : X \rightarrow A$
- Discounting with $0 \leq \gamma < 1$ (future value of money)

No discounting:

\[E(\sum_{t=0}^{T} r_t) \quad \text{Expectation over many possible reward trajectories for } \pi : X \rightarrow A \]
RL learning: objective functions

- **Objective:**
 Find a mapping $\pi^*: X \rightarrow A$
 That maximizes some combination of future reinforcements (rewards) received over time

- **Valuation models** (quantify how good the mapping is):
 - Finite horizon models
 $$E\left(\sum_{t=0}^{T} r_t\right)$$
 Time horizon: $T > 0$
 $$E\left(\sum_{t=0}^{T} \gamma^t r_t\right)$$
 Discount factor: $0 \leq \gamma < 1$
 - Infinite horizon discounted model
 $$E\left(\sum_{t=0}^{\infty} \gamma^t r_t\right)$$
 Discount factor: $0 \leq \gamma < 1$
 - Average reward
 $$\lim_{T \rightarrow \infty} \frac{1}{T} E\left(\sum_{t=0}^{T} r_t\right)$$

Agent navigation example

- **Agent navigation in the Maze:**
 - 4 moves in compass directions
 - Effects of moves are stochastic – we may wind up in other than intended location with a non-zero probability
 - **Objective:** learn how to reach the goal state in the shortest expected time

![Maze Diagram](image-url)
Agent navigation example

- The RL model:
 - Input: \(X \) – position of an agent
 - Output: \(A \) – a move
 - Reinforcements: \(R \)
 - -1 for each move
 - +100 for reaching the goal
 - A policy: \(\pi : X \rightarrow A \)

- Goal: find the policy maximizing future expected rewards

\[
E(\sum_{t=0}^{\infty} \gamma^t r_t) \quad 0 \leq \gamma < 1
\]

Exploration vs. Exploitation

- The (learner) actively interacts with the environment:
 - At the beginning the learner does not know anything about the environment
 - It gradually gains the experience and learns how to react to the environment
- Dilemma (exploration-exploitation):
 - After some number of steps, should I select the best current choice (exploitation) or try to learn more about the environment (exploration)?
 - Exploitation may involve the selection of a sub-optimal action and prevent the learning of the optimal choice
 - Exploration may spend too much time on trying bad currently suboptimal actions
Effects of actions on the environment

Effect of actions on the environment (next input x to be seen)

- No effect, the distribution over possible x is fixed; action consequences (rewards) are seen immediately,
- Otherwise, distribution of x can change; the rewards related to the action can be seen with some delay.

Leads to two forms of reinforcement learning:

- **Learning with immediate rewards**
 - Gambling example
- **Learning with delayed rewards**
 - Agent navigation example;

 move choices affect the state of the environment (position changes), a big reward at the goal state is delayed

RL with immediate rewards

- **Game:** 3 different biased coins are tossed
 - The coin to be tossed is selected randomly from the three options and I always see which coin I am going to play next
 - I make bets on head or tail and I always wage $1
 - If I win I get $1, otherwise I lose my bet
- **RL model:**
 - **Input:** X – a coin chosen for the next toss
 - **Action:** A – head or tail bet
 - **Reinforcements:** $\{1, -1\}$
- **Learning goal:** find $\pi : X \rightarrow A$

 maximizing the future expected profits over time

 $E(\sum_{t=0}^{\infty} \gamma^t r_t) \quad 0 \leq \gamma < 1 \quad \text{a discount factor}$
RL with immediate rewards

- **Expected reward**
 \[E\left(\sum_{t=0}^{\infty} \gamma^t r_t \right) \quad 0 \leq \gamma < 1 \]

- **Immediate reward case:**
 - Reward for the choice becomes available immediately
 - Our action does not affect the environment and thus future rewards
 \[E\left(\sum_{t=0}^{\infty} \gamma^t r_t \right) = E(r_0) + E(\gamma r_1) + E(\gamma^2 r_2) + \ldots \]
 \[r_0, r_1, r_2 \ldots \text{ Rewards for every step of the game} \]
 - Expected one step reward for input \(x \) (coin to play next) and the choice \(a \): \(R(x, a) \)

RL with immediate rewards

Immediate reward case:
- Reward for the choice \(a \) becomes available immediately
- **Expected reward for the input \(x \) and choice \(a \):** \(R(x, a) \)
 - For the gambling problem it is:
 \[R(x, a_i) = \sum_j r(\omega_j \mid a_i, x) P(\omega_j \mid x, a_i) \]
 - \(\omega_j \) - a future outcome of the coin toss
- **Expected one step reward for a strategy**
 \[R(\pi) = \sum_x R(x, \pi(x)) P(x) \quad \pi : X \rightarrow A \]
 \[R(\pi) \text{ is the expected reward for } r_0, r_1, r_2 \ldots \]
RL with immediate rewards

• Expected reward

\[E(\sum_{t=0}^{\infty} \gamma^t r_t) = E(r_0) + E(\gamma r_1) + E(\gamma^2 r_2) + \ldots \]

• Optimizing the expected reward

\[
\begin{align*}
\max_{\pi} E(\sum_{t=0}^{\infty} \gamma^t r_t) &= \max_{\pi} \sum_{t=0}^{\infty} \gamma^t E(r_t) = \max_{\pi} \sum_{t=0}^{\infty} \gamma^t R(\pi) = \max_{\pi} R(\pi) (\sum_{t=0}^{\infty} \gamma^t) \\
&= (\sum_{t=0}^{\infty} \gamma^t) \max_{\pi} R(\pi) \\
\max_{\pi} R(\pi) &= \max_{\pi} \sum_{x} R(x, \pi(x)) P(x) = \sum_{x} P(x) [\max_{\pi(x)} R(x, \pi(x))]
\end{align*}
\]

Optimal strategy: \(\pi^* : X \rightarrow A \)

\[\pi^*(x) = \arg \max_{a} R(x, a) \]

RL with immediate rewards

• We know that \(\pi^*(x) = \arg \max_{a} R(x, a) \)

• Problem: In the RL framework we do not know \(R(x, a) \)
 – The expected reward for performing action \(a \) at input \(x \)

• How to estimate \(R(x, a) \) ?
RL with immediate rewards

- **Problem:** In the RL framework we do not know $R(x, a)$
 - The expected reward for performing action a at input x
- **Solution:**
 - For each input x try different actions a
 - Estimate $R(x, a)$ using the average of observed rewards
 $\tilde{R}(x, a) = \frac{1}{N_{x,a}} \sum_{i=1}^{N_{x,a}} r_{x,a}^i$
 - Action choice $\pi(x) = \arg \max_a \tilde{R}(x, a)$
 - Accuracy of the estimate: statistics (Hoeffding’s bound)
 $P\left(|\tilde{R}(x, a) - R(x, a)| \geq \varepsilon \right) \leq \exp \left[-\frac{2\varepsilon^2 N_{x,a}}{(r_{\max} - r_{\min})^2} \right] \leq \delta$
 - Number of samples:
 $N_{x,a} \geq \frac{(r_{\max} - r_{\min})^2}{2\varepsilon^2 \ln \frac{1}{\delta}}$

RL with immediate rewards

- **On-line (stochastic approximation)**
 - An alternative way to estimate $R(x, a)$
- **Idea:**
 - choose action a for input x and observe a reward $r_{x,a}^i$
 - Update an estimate in every step i

 $\tilde{R}(x, a)^{(i)} \leftarrow (1 - \alpha(i))\tilde{R}(x, a)^{(i-1)} + \alpha(i) r_{x,a}^i$

 $\alpha(i)$ - a learning rate

- **Convergence property:** The approximation converges in the limit for an appropriate learning rate schedule.
- Assume: $\alpha(n(x, a))$ - is a learning rate for nth trial of (x,a) pair
- Then the converge is assured if:
 1. $\sum_{i=1}^{\infty} \alpha(i) = \infty$
 2. $\sum_{i=1}^{\infty} \alpha(i)^2 < \infty$
Exploration vs. Exploitation

- In the RL framework
 - the (learner) actively interacts with the environment.
 - At any point in time it has an estimate of $\tilde{R}(x,a)$ for any input action pair
- **Dilemma:**
 - Should the learner use the current best choice of action (exploitation)
 - Or choose other action a and further improve its estimate (exploration)

- Different exploration/exploitation strategies exist

Exploration vs. Exploitation

- **Uniform exploration:** Exploration parameter $0 \leq \epsilon \leq 1$
 - Choose the “current” best choice with probability $1 - \epsilon$
 $$\hat{\pi}(x) = \arg\max_{a \in A} \tilde{R}(x,a)$$
 - All other choices are selected with a uniform probability $\frac{\epsilon}{|A| - 1}$
- **Boltzman exploration**
 - The action is chosen randomly but proportionally to its current expected reward estimate
 $$p(a \mid x) = \frac{\exp\left[\tilde{R}(x,a) / T\right]}{\sum_{a' \in A} \exp\left[\tilde{R}(x,a') / T\right]}$$

T – is temperature parameter. **What does it do?**