Dimensionality reduction
Feature selection

Milos Hauskrecht
milos@cs.pitt.edu
5329 Sennott Square

Dimensionality reduction. Motivation.

- ML methods are sensitive to the dimensionality d of data
- **Question:** Is there a lower dimensional representation of the data that captures well its characteristics?
- **Objective of dimensionality reduction:**
 - Find a lower dimensional representation of data
- **Two learning problems:**
 - Supervised
 - $D = \{(x_1, y_1), (x_2, y_2), \ldots, (x_n, y_n)\}$
 - $x_i = (x_{i1}, x_{i2}, \ldots, x_{id})$
 - Unsupervised
 - $D = \{x_1, x_2, \ldots, x_n\}$
 - $x_i = (x_{i1}, x_{i2}, \ldots, x_{id})$
- **Goal:** replace $x_i = (x_{i1}, x_{i2}, \ldots, x_{id})$
 with x_i' of dimensionality $d' < d$
Dimensionality reduction for classification

• Classification problem example:
 \[D = \{(x_1, y_1), (x_2, y_2), \ldots, (x_n, y_n)\} \]
 \[x_i = (x_i^1, x_i^2, \ldots, x_i^d) \]
 \[f: x \rightarrow y \]
 – Assume the dimension \(d \) of the data point \(x \) is very large

• Problems with high dimensional input vectors
 – A large number of parameters to learn, if a dataset is small this can result in:
 • A large variance of estimates and overfit
 – it becomes hard to explain what features are important in the model (too many choices, some can be substitutable)

Dimensionality reduction

• Solutions:
 – Selection of a smaller subset of inputs (features) from a large set of inputs; train classifier on the reduced input set
 – Combination of high dimensional inputs to a smaller set of features \(\phi_h(x) \); train classifier on new features
Feature selection

How to find a good subset of inputs/features?

• **We need:**
 – A criterion for ranking good inputs/features
 – Search procedure for finding a good set of features

• **Feature selection process can be:**
 – **Dependent on the learning task**
 • e.g. classification
 • Selection of features affected by what we want to predict
 – **Independent of the learning task**
 • Unsupervised methods
 • may lack the accuracy for classification/regression tasks

Task-dependent feature selection

Assume: **Classification problem:**
 – x – input vector, y - output

Objective: Find a subset of inputs/features that gives/preserves most of the output prediction capabilities

Selection approaches:

• **Filtering approaches**
 – Filter out features with small predictive potential
 – Done before classification; typically uses univariate analysis

• **Wrapper approaches**
 – Select features that directly optimize the accuracy of the multivariate classifier

• **Embedded methods**
 – Feature selection and learning closely tied in the method
 – Regularization methods, decision tree methods
Feature selection through filtering

Assume:

Classification problem:
- x – input vector, y - output

- How to select the features/inputs?
 Univariate analysis
 - Pretend that only one input x_k, exists
 - Calculate a score reflecting how well x_k predicts the output y alone
 - Repeat the above analysis and scores for all inputs
 - Pick the inputs best scores
 (or eliminate/filter the inputs with the worst scores)

Feature scoring for classification

- Scores for measuring the differential expression
 - T-Test score (Baldi & Long)
 - Based on the test that two groups come from the same population
 - Null hypothesis: is mean of class 0 = mean of class 1
Feature scoring for classification

Scores for measuring the differential expression

• Fisher Score

\[Fisher(i) = \frac{(\mu^{(+)} - \mu^{(-)})^2}{\sigma^{(+)} + \sigma^{(-)}} \]

- **AUROC score**: Area under Receiver Operating Characteristic curve

Feature scoring

• Correlation coefficients
 - Measures linear dependences

\[\rho(x_k, y) = \frac{Cov(x_k, y)}{\sqrt{Var(x_k)Var(y)}} \]

• Mutual information
 - Measures dependences
 - Needs discretized input values

\[I(x_k, y) = \sum_i \sum_j \tilde{P}(x_k = j, y = i) \log_2 \frac{\tilde{P}(x_k = j, y = i)}{\tilde{P}(x_k = j)\tilde{P}(y = i)} \]
Feature set scoring

Problems:
• Univariate score assumptions:
 – Only one input and its effect on \(y \) is incorporated in the score
 – Effects of two features on \(y \) are considered to be independent

Partial solution:
• Correlation based feature selection
 • Idea: good feature subsets contain features that are highly correlated with the class but independent of each other
 • Assume a set of features \(S \). Then
 \[
 M(S) = \frac{k \bar{r}_{yx}}{\sqrt{k + k(k + 1) \bar{r}_{xx}}}
 \]
 • Average correlation between \(x \) and class \(y \) \(\bar{r}_{yx} \)
 • Average correlation between pairs of \(x \) \(\bar{r}_{xx} \)

Feature selection

Problems:
• Many inputs and low sample size
 – if many random features, and not many instances we can learn from, the features with a good differentially expressed score may arise simply by chance
 – The probability of this happening can be quite large
• Techniques to address the problem:
 – reduce FDR (False discovery rate) and
 – FWER (Family wise error).